Interface engineering of Li1.3Al0.3Ti1.7(PO4)3 ceramic electrolyte via multifunctional interfacial layer for all-solid-state lithium batteries

被引:67
|
作者
Jin, Yingmin [1 ]
Liu, Chaojun [1 ]
Zong, Xin [1 ]
Li, Dong [1 ]
Fu, Mengyu [1 ]
Tan, Siping [1 ,2 ]
Xiong, Yueping [1 ]
Wei, Junhua [2 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, MITT Key Lab Crit Mat Technol New Energy Convers, Harbin 150001, Peoples R China
[2] Guizhou Meiling Power Sources Co Ltd, State Key Lab Adv Chem Power Sources, Zunyi 563003, Guizhou, Peoples R China
关键词
Li1.3Al0.3Ti1.7(PO4)(3); Solid-state lithium batteries; Multifunctional interfacial layer; Solid electrolytes; IONIC-CONDUCTIVITY; POLYMER; STABILITY; ANODE;
D O I
10.1016/j.jpowsour.2020.228125
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li1.3Al0.3Ti1.7(PO4)(3) (LATP) suffers from high interfacial resistance and instability with Li which hinder its application in all-solid-state lithium batteries. Herein, we propose an effective method to overcome these obstacles by introducing a LATP nanoparticle-reinforced composite polymer electrolyte (CPE) at LATP/Li interface. The multifunctional CPE interfacial layer can not only avoid side reactions between LATP and Li, but also ensure intimate contact at LATP/Li interface to reduce interfacial resistance. Moreover, the soft CPE layer can mitigate the large volume change of Li anode during cycling due to its high viscosity and flexible features. With the assistance of LATP fillers, the CPE interfacial layer can inhibit the formation and penetration of Li dendrites with enhanced mechanical strength and uniform Li deposition. After the modification of CPE interfacial layer, solidstate electrolyte with the sandwiched structure of CPE/LATP/CPE possesses satisfactory features such as high ionic conductivity, high interfacial stability and wide electrochemical window. Symmetric Li cell exhibits significant reduction in interfacial resistance (from 2852 Omega cm(2) to 505 Omega cm(2)) and overpotential (from 2.03 V to 0.04 V), which ensures a stable galvanostatic cycle for more than 400 h at 0.05 mA cm(-2). Solid-state LiFePO4/LATP/CPE/Li batteries deliver remarkable cycling ability and high coulombic efficiency.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Stabilizing the Li1.3Al0.3Ti1.7(PO4)3|Li Interface for High Efficiency and Long Lifespan Quasi-Solid-State Lithium Metal Batteries
    Chen, Zhen
    Stepien, Dominik
    Wu, Fanglin
    Zarrabeitia, Maider
    Liang, Hai-Peng
    Kim, Jae-Kwang
    Kim, Guk-Tae
    Passerini, Stefano
    CHEMSUSCHEM, 2022, 15 (10)
  • [22] Highly Stable Quasi-Solid-State Lithium Metal Batteries: Reinforced Li1.3Al0.3Ti1.7(PO4)3/Li Interface by a Protection Interlayer
    Chen, Zhen
    Kim, Guk-Tae
    Kim, Jae-Kwang
    Zarrabeitia, Maider
    Kuenzel, Matthias
    Liang, Hai-Peng
    Geiger, Dorin
    Kaiser, Ute
    Passerini, Stefano
    ADVANCED ENERGY MATERIALS, 2021, 11 (30)
  • [23] An ameliorated interface between PEO electrolyte and Li anode by Li1.3Al0.3Ti1.7(PO4)3 nanoparticles
    Yan, Qiaohong
    Cheng, Xing
    Yan, Rentai
    Pu, Xingrui
    Zhu, Xiaohong
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024, 28 (02) : 601 - 607
  • [24] Enhanced ionic conductivity and electrochemical stability of Indium doping Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes for all-solid-state lithium-ion batteries
    Jieqiong Li
    Chengjin Liu
    Chang Miao
    Zhiyan Kou
    Wei Xiao
    Ionics, 2022, 28 : 63 - 72
  • [25] Enhanced ionic conductivity and electrochemical stability of Indium doping Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes for all-solid-state lithium-ion batteries
    Li, Jieqiong
    Liu, Chengjin
    Miao, Chang
    Kou, Zhiyan
    Xiao, Wei
    IONICS, 2022, 28 (01) : 63 - 72
  • [26] High ionic conductivity Y doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Zhao, Erqing
    Guo, Yudi
    Xu, Guangri
    Yuan, Long
    Liu, Jingcheng
    Li, Xiaobo
    Yang, Li
    Ma, Jingjing
    Li, Yuanchao
    Fan, Shumin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 782 : 384 - 391
  • [27] Chemomechanical Failure Mechanism Study in NASICON-Type Li1.3Al0.3Ti1.7(PO4)3 Solid-State Lithium Batteries
    Zhu, Jianping
    Zhao, Jun
    Xiang, Yuxuan
    Lin, Min
    Wang, Hongchun
    Zheng, Bizhu
    He, Huajin
    Wu, Qihui
    Huang, Jian Yu
    Yang, Yong
    CHEMISTRY OF MATERIALS, 2020, 32 (12) : 4998 - 5008
  • [28] Enhancing the electrochemical stability of the Li1.3Al0.3Ti1.7(PO4)3 by altering with Li6PS5Cl composite solid electrolytes for all-solid-state lithium batteries
    Yu, Cheng-En
    Babu, S. Kishore
    Huang, Ming-Kuen
    Chang, Jeng-Kui
    Liu, Wei-Ren
    JOURNAL OF ENERGY STORAGE, 2025, 110
  • [29] Enhanced electrochemical performance of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte by anion doping
    Kang, Jingrui
    Guo, Xu
    Gu, Rui
    Hao, Honglei
    Tang, Yi
    Wang, Jiahui
    Jin, Li
    Li, Hongfei
    Wei, Xiaoyong
    NANO RESEARCH, 2024, 17 (03) : 1465 - 1472
  • [30] Charge Carrier Dynamics of the Mixed Conducting Interphase in All-Solid-State Batteries: Lithiated Li1.3Al0.3Ti1.7(PO4)3 as a Case Study
    Scheiber, Thomas
    Gadermaier, Bernhard
    Finsgar, Matjaz
    Wilkening, H. Martin R.
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (45)