Interface engineering of Li1.3Al0.3Ti1.7(PO4)3 ceramic electrolyte via multifunctional interfacial layer for all-solid-state lithium batteries

被引:67
|
作者
Jin, Yingmin [1 ]
Liu, Chaojun [1 ]
Zong, Xin [1 ]
Li, Dong [1 ]
Fu, Mengyu [1 ]
Tan, Siping [1 ,2 ]
Xiong, Yueping [1 ]
Wei, Junhua [2 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, MITT Key Lab Crit Mat Technol New Energy Convers, Harbin 150001, Peoples R China
[2] Guizhou Meiling Power Sources Co Ltd, State Key Lab Adv Chem Power Sources, Zunyi 563003, Guizhou, Peoples R China
关键词
Li1.3Al0.3Ti1.7(PO4)(3); Solid-state lithium batteries; Multifunctional interfacial layer; Solid electrolytes; IONIC-CONDUCTIVITY; POLYMER; STABILITY; ANODE;
D O I
10.1016/j.jpowsour.2020.228125
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li1.3Al0.3Ti1.7(PO4)(3) (LATP) suffers from high interfacial resistance and instability with Li which hinder its application in all-solid-state lithium batteries. Herein, we propose an effective method to overcome these obstacles by introducing a LATP nanoparticle-reinforced composite polymer electrolyte (CPE) at LATP/Li interface. The multifunctional CPE interfacial layer can not only avoid side reactions between LATP and Li, but also ensure intimate contact at LATP/Li interface to reduce interfacial resistance. Moreover, the soft CPE layer can mitigate the large volume change of Li anode during cycling due to its high viscosity and flexible features. With the assistance of LATP fillers, the CPE interfacial layer can inhibit the formation and penetration of Li dendrites with enhanced mechanical strength and uniform Li deposition. After the modification of CPE interfacial layer, solidstate electrolyte with the sandwiched structure of CPE/LATP/CPE possesses satisfactory features such as high ionic conductivity, high interfacial stability and wide electrochemical window. Symmetric Li cell exhibits significant reduction in interfacial resistance (from 2852 Omega cm(2) to 505 Omega cm(2)) and overpotential (from 2.03 V to 0.04 V), which ensures a stable galvanostatic cycle for more than 400 h at 0.05 mA cm(-2). Solid-state LiFePO4/LATP/CPE/Li batteries deliver remarkable cycling ability and high coulombic efficiency.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Solid Polymer Electrolyte Reinforced with a Li1.3Al0.3Ti1.7(PO4)3-Coated Separator for All-Solid-State Lithium Batteries
    Li, Shuai
    Lu, Jiaze
    Geng, Zhen
    Chen, Yue
    Yu, Xiqian
    He, Meng
    Li, Hong
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (01) : 1195 - 1202
  • [2] In situ electrochemical modification of the Li/Li1.3Al0.3Ti1.7(PO4)3 interface in solid lithium metal batteries via an electrolyte additive
    Xu, Yadong
    Tian, Meng
    Rong, Yi
    Lu, Chengyi
    Lu, Zhengyi
    Shi, Ruhua
    Gu, Tianyi
    Zhang, Qian
    Jin, Chengchang
    Yang, Ruizhi
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 641 : 396 - 403
  • [3] Building a highly functional Li1.3Al0.3Ti1.7(PO4)3/poly (vinylidene fluoride) composite electrolyte for all-solid-state lithium batteries
    Jin, Yingmin
    Liu, Chaojun
    Jia, Zhenggang
    Zong, Xin
    Li, Dong
    Fu, Mengyu
    Wei, Junhua
    Xiong, Yueping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 874
  • [4] Interface Analysis of LiCl as a Protective Layer of Li1.3Al0.3Ti1.7(PO4)3 for Electrochemically Stabilized All-Solid-State Li-Metal Batteries
    Sohib, Ahmad
    Irham, Muhammad Alief
    Karunawan, Jotti
    Santosa, Sigit Puji
    Floweri, Octia
    Iskandar, Ferry
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (13) : 16562 - 16570
  • [5] Chlorine-doped Li1.3Al0.3Ti1.7(PO4)3 as an electrolyte for solid lithium metal batteries
    Li, Shuyuan
    Huang, Zhongyuan
    Xiao, Yinguo
    Sun, Chunwen
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (14) : 5336 - 5343
  • [6] Sulfur-doped Li1.3Al0.3Ti1.7(PO4)3 as a solid electrolyte for all-solid-state batteries: First-principles calculations
    Ahmed, Doaa Aasef
    Kizilaslan, Abdulkadir
    Celik, Mustafa
    Vonbun-Feldbauer, Gregor B.
    Cetinkaya, Tugrul
    ELECTROCHIMICA ACTA, 2023, 463
  • [7] Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry
    Duluard, Sandrine
    Paillassa, Aude
    Puech, Laurent
    Vinatier, Philippe
    Turq, Viviane
    Rozier, Patrick
    Lenormand, Pascal
    Taberna, Pierre-Louis
    Simon, Patrice
    Ansart, Florence
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2013, 33 (06) : 1145 - 1153
  • [8] Superionic bulk conductivity in Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Mertens, Andreas
    Yu, Shicheng
    Schoen, Nino
    Gunduz, Deniz C.
    Tempel, Hermann
    Schierholz, Roland
    Hausen, Florian
    Kungl, Hans
    Granwehr, Josef
    Eichel, Ruediger-A
    SOLID STATE IONICS, 2017, 309 : 180 - 186
  • [9] Development of electrode and electrolyte materials for solid-state batteries based on Li1.3Al0.3Ti1.7(PO4)3
    Lisovskyi, I
    Barsukov, V
    Solopan, S.
    Belous, A.
    Khomenko, V
    Stryzhakova, N.
    Maletin, Y.
    NANO EXPRESS, 2024, 5 (03):
  • [10] Preparation and Research of new Polyelectrolyte based on Li1.3Al0.3Ti1.7(PO4)3 for all solid state batteries
    Liang, Xinghua
    Jiang, Xingtao
    Yang, Dayong
    Zhang, Yu
    Lan, Lingxiao
    Wang, Zhenjiang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (04):