Tropical Mathematics, Idempotent Analysis, Classical Mechanics and Geometry

被引:0
作者
Litvinov, G. L. [1 ]
机构
[1] Independent Univ Moscow, Moscow 119002, Russia
来源
SPECTRAL THEORY AND GEOMETRIC ANALYSIS | 2011年 / 535卷
关键词
Tropical mathematics; idempotent mathematics; idempotent functional analysis; classical mechanics; convex geometry; tropical geometry; Newton polytopes; THEOREMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A very brief introduction to tropical and idempotent mathematics (including idempotent functional analysis) is presented. Applications to classical mechanics and geometry are especially examined.
引用
收藏
页码:159 / 186
页数:28
相关论文
共 63 条
[1]  
AKIAN M, SET COVERINGS INVERT, P19
[2]  
[Anonymous], 2005, CONT MATH
[3]  
[Anonymous], 1987, METHODES OPERATORIEL
[4]  
[Anonymous], CORRES PRINCIPLE IDE
[5]  
[Anonymous], J MATH SCI
[6]  
[Anonymous], 1994, Advances in Imaging and Electron Physics, DOI DOI 10.1016/S1076-5670(08)70083-1
[7]  
Baccelli F., 1992, Synchronization and Linearity
[8]  
BIRKHOFF G, 1948, AM MATH SOC C PUBL
[9]  
BUTKOVIC P, COMBINATORIAL ASPECT, P93
[10]  
Carre B., 1979, Graphs and Networks