Stormwater Detention System Parameter Sensitivity and Uncertainty Analysis Using SWMM

被引:34
作者
Knighton, James [1 ]
Lennon, Edward [2 ]
Bastidas, Luis [3 ]
White, Eric [4 ]
机构
[1] Cornell Univ, Dept Biol & Environm Engn, Ithaca, NY 14853 USA
[2] Philadelphia Water Dept, 1101 Market St, Philadelphia, PA 19107 USA
[3] Enercon Serv Inc, 1501 Ardmore Blvd,Suite 200, Pittsburgh, PA 15221 USA
[4] Water Inst Gulf, One Amer Pl,301N Main St, Baton Rouge, LA 70825 USA
关键词
Storm water management model (SWMM); Stormwater wetland; Generalized likelihood uncertainty estimation (GLUE); Multiobjective generalized sensitivity analysis (MOGSA); Pennsylvania; HYDROLOGIC MODEL PARAMETERS; RAINFALL-RUNOFF MODEL; INFORMATION-CONTENT; GLUE METHODOLOGY; CALIBRATION; TRANSPIRATION; COMPRESSION; INCOHERENCE; WETLAND;
D O I
10.1061/(ASCE)HE.1943-5584.0001382
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A U.S. EPA (EPA) model was developed for the Cathedral Run stormwater wetland (Philadelphia, Pennsylvania). This research presents a formal sensitivity analysis of hydraulic and hydrologic model parameters contributing uncertainty with the multiobjective generalized sensitivity analysis (MOGSA) algorithm. The parameters identified as significant include: percent routed (PR), subcatchment soils, subcatchment width, wetland soils, and the flood weir coefficient. These results suggest that this model is well parameterized for detailed simulations of stormwater control installations, and contests the existence of a globally sensitive set of parameters. This research demonstrates that detailed models of stormwater control installations are significantly affected by uncertainty related to parameters beyond traditional calibration (i.e.,runoff generation) parameters. The authors present a monitoring design based on wetland water surface elevation. The simplified monitoring scheme obtained statistically significant calibration data as determined through MOGSA. The generalized likelihood uncertainty estimation (GLUE) algorithm was then applied to develop marginal posterior model parameter distributions and two-dimensional (2D) probability spaces using a formal Bayesian likelihood function. The GLUE results demonstrate the importance of uncertainty and equifinality within the context of stormwater wetland modeling.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] A parameter sensitivity analysis of two Chalk tracer tests
    Mathias, S. A.
    Butler, A. P.
    Atkinson, T. C.
    Kachi, S.
    Ward, R. S.
    [J]. QUARTERLY JOURNAL OF ENGINEERING GEOLOGY AND HYDROGEOLOGY, 2009, 42 : 237 - 244
  • [42] Multivariate aspects of model uncertainty analysis: Tools for sensitivity analysis and calibration
    Klepper, O
    [J]. ECOLOGICAL MODELLING, 1997, 101 (01) : 1 - 13
  • [43] Sensitivity and identifiability analysis of a conceptual-lumped model in the headwaters of the Benue River Basin, Cameroon: implications for uncertainty quantification and parameter optimization
    Nonki, Rodric Merime
    Amoussou, Ernest
    Lenouo, Andre
    Tshimanga, Raphael Muamba
    Houndenou, Constant
    [J]. HYDROLOGY RESEARCH, 2023, 54 (09): : 1036 - 1054
  • [44] Sensitivity and uncertainty analysis of the carbon and water fluxes at the tree scale in Eucalyptus plantations using a metamodeling approach
    Christina, M.
    Nouvellon, Y.
    Laclau, J. P.
    Stape, J. L.
    Campoe, O. C.
    le Maire, G.
    [J]. CANADIAN JOURNAL OF FOREST RESEARCH, 2016, 46 (03) : 297 - 309
  • [45] Parameter optimization and uncertainty analysis for plot-scale continuous modeling of runoff using a formal Bayesian approach
    Laloy, E.
    Fasbender, D.
    Bielders, C. L.
    [J]. JOURNAL OF HYDROLOGY, 2010, 380 (1-2) : 82 - 93
  • [46] Global sensitivity/uncertainty analysis for agent-based models
    Fonoberova, Maria
    Fonoberov, Vladimir A.
    Mezic, Igor
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2013, 118 : 8 - 17
  • [47] An agent-based approach to global uncertainty and sensitivity analysis
    Harp, Dylan R.
    Vesselinov, Velimir V.
    [J]. COMPUTERS & GEOSCIENCES, 2012, 40 : 19 - 27
  • [48] Parameter Sensitivity Analysis of SWAT Modeling in the Upper Heihe River Basin Using Four Typical Approaches
    Xiang, Xin
    Ao, Tianqi
    Xiao, Qintai
    Li, Xiaodong
    Zhou, Li
    Chen, Yao
    Bi, Yao
    Guo, Jingyu
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (19):
  • [49] PARAMETER AND UNCERTAINTY ESTIMATION FOR DYNAMICAL SYSTEMS USING SURROGATE STOCHASTIC PROCESSES
    Chung, Matthias
    Binois, Mickael
    Gramacy, Robert B.
    Bardsley, Johnathan M.
    Moquin, David J.
    Smith, Amanda P.
    Smith, Amber M.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04) : A2212 - A2238
  • [50] Physically-based urban stormwater quality modelling: An efficient approach for calibration and sensitivity analysis
    Hong, Yi
    Liao, Qinzhuo
    Bonhomme, Celine
    Chebbo, Ghassan
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2019, 246 : 462 - 471