SUM-PRODUCT PHENOMENON IN FINITE FIELDS NOT OF PRIME ORDER

被引:1
|
作者
Shen, Chun-Yen [1 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
Sum-product estimates; expanding maps;
D O I
10.1216/RMJ-2011-41-3-941
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F = F-p(n) be a finite field and A a subset of F so that for any A' subset of A with vertical bar A'vertical bar >= vertical bar A vertical bar(15/16) and for any G subset of F a subfield (not necessarily proper) and for any elements c, d is an element of F if A' subset of cG + d, then vertical bar A vertical bar <= vertical bar G vertical bar(1/2) Then it must be that max(vertical bar A + A vertical bar,vertical bar F(A, A)vertical bar) greater than or similar to vertical bar A vertical bar(17/16) where F : F-p x F-p -> F-p is a function defined by F(x, y) = x(g(x) + cy), where c is an element of F-p*; and g : F-p -> F-p is any function. The case g = 0 and c = 1 improves the exponent in [6] from 20/19 to 17/16.
引用
收藏
页码:941 / 948
页数:8
相关论文
共 15 条
  • [1] Slightly improved sum-product estimates in fields of prime order
    Li, Liangpan
    ACTA ARITHMETICA, 2011, 147 (02) : 153 - 160
  • [2] The sum-product estimate for large subsets of prime fields
    Garaev, M. Z.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (08) : 2735 - 2739
  • [3] New sum-product type estimates over finite fields
    Roche-Newton, Oliver
    Rudnev, Misha
    Shkredov, Ilya D.
    ADVANCES IN MATHEMATICS, 2016, 293 : 589 - 605
  • [4] Product graphs, sum-product graphs and sum-product estimates over finite rings
    Le Anh Vinh
    FORUM MATHEMATICUM, 2015, 27 (03) : 1639 - 1655
  • [5] Some sum-product estimates in matrix rings over finite fields
    Xie, Chengfei
    Ge, Gennian
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 79
  • [6] Some sum-product type estimates for two-variables over prime fields
    Tran, Phuc D.
    Nguyen Van The
    DISCRETE APPLIED MATHEMATICS, 2021, 289 : 1 - 11
  • [7] A note on sum-product estimates over finite valuation rings
    Pham, Duc Hiep
    ACTA ARITHMETICA, 2021, 198 (02) : 187 - 194
  • [8] VARIATIONS ON THE SUM-PRODUCT PROBLEM
    Murphy, Brendan
    Roche-Newton, Oliver
    Stkredov, Ilya
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) : 514 - 540
  • [9] A note on sum-product estimates
    Balog, Antal
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 79 (3-4): : 283 - 289
  • [10] On the energy variant of the sum-product conjecture
    Rudnev, Misha
    Shkredov, Ilya D.
    Stevens, Sophie
    REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (01) : 207 - 232