Perturbation Analysis of the Algebraic Metric Generalized Inverse in Lp(,)

被引:2
作者
Cao, Jianbing [1 ,2 ]
Xue, Yifeng [3 ,4 ]
机构
[1] Henan Inst Sci & Technol, Dept Math, Xinxiang, Henan, Peoples R China
[2] Henan Normal Univ, Postdoctoral Res Stn Phys, Xinxiang, Henan, Peoples R China
[3] East China Normal Univ, Dept Math, Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
[4] East China Normal Univ, Res Ctr Operator Algebras, Shanghai 200241, Peoples R China
基金
中国博士后科学基金;
关键词
Best approximate solution; gap function; metric generalized inverse; stable perturbation; Primary; 47A05; Secondary; 46B20; LINEAR-OPERATORS; BANACH-SPACES;
D O I
10.1080/01630563.2017.1379025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X = LP cx)) and T, ST : X X be bounded i near operators. Put T = T 6T. In this paper, using the notion of quasi-additivity and the concept of stable perturbation, we will give some estimates of the upper bound of II TM - TM in terms of the gap function. As an application of main results, we also nvestigate the best approximate solution problem of ill -posed operator equation.
引用
收藏
页码:1624 / 1643
页数:20
相关论文
共 22 条
  • [1] Barbu V., 1978, CONVEXITY OPTIMIZATI
  • [2] Beauzamy B., 1982, N HOLLAND MATH STUDI
  • [3] Cao J., 2017, ANN FUNCT ANAL
  • [4] Perturbation of the Moore-Penrose Metric Generalized Inverse in Reflexive Strictly Convex Banach Spaces
    Cao, Jian Bing
    Zhang, Wan Qin
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (06) : 725 - 735
  • [5] Cao JB, 2014, ACTA MATH UNIV COMEN, V83, P181
  • [6] Perturbation analysis for the operator equation Tx=b in Banach spaces
    Chen, GL
    Xue, YF
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 212 (01) : 107 - 125
  • [7] DIESTEL J, 1975, LECT NOTES MATH
  • [8] PERTURBATION ANALYSIS FOR THE MOORE-PENROSE METRIC GENERALIZED INVERSE OF CLOSED LINEAR OPERATORS IN BANACH SPACES
    Du, Fapeng
    Chen, Jianlong
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (02): : 240 - 253
  • [9] PERTURBATION ANALYSIS FOR THE MOORE-PENROSE METRIC GENERALIZED INVERSE OF BOUNDED LINEAR OPERATORS
    Du, Fapeng
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (04): : 100 - 114
  • [10] Kato T, 1984, PERTURBATION THEORY