On the almost monotone convergence of sequences of continuous functions

被引:0
作者
Grande, Zbigniew [1 ]
机构
[1] Casimirus Great Univ, Inst Math, Bydgoszcz, Poland
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2011年 / 9卷 / 04期
关键词
Almost monotone convergence; Continuity; Baire; 1; class; Upper semicontinuity; Lower semicontinuity; Approximate continuity; APPROXIMATELY CONTINUOUS-FUNCTIONS; BAIRE CLASSES; DISCRETE; LIMITS;
D O I
10.2478/s11533-011-0030-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sequence (f (n) ) (n) of functions f (n) : X -> a"e almost decreases (increases) to a function f: X -> a"e if it pointwise converges to f and for each point x a X there is a positive integer n(x) such that f (n+1)(x) a parts per thousand currency sign f (n) (x) (f (n+1)(x) a parts per thousand yen f (n) (x)) for n a parts per thousand yen n(x). In this article I investigate this convergence in some families of continuous functions.
引用
收藏
页码:772 / 777
页数:6
相关论文
共 50 条
[41]   On Fuzzy P-Continuous Functions [J].
Ekici, Erdal .
ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2007, 34 :67-72
[42]   FUNCTIONS CONTINUOUS RELATIVE TO THEIR SETS OF DISCONTINUITY [J].
Gorman, William J. ;
Weil, Clifford E. .
REAL ANALYSIS EXCHANGE, 2024, 49 (01) :235-240
[43]   The structure of LC-continuous functions [J].
Ostrovsky, A. .
ACTA MATHEMATICA HUNGARICA, 2011, 133 (04) :372-375
[44]   STRONGLY (lambda, theta)-CONTINUOUS FUNCTIONS [J].
Caldas, M. ;
Jafari, S. ;
Moshokoa, S. P. ;
Noiri, T. .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2007, 56 (03) :331-342
[45]   UNIFORM LIMITS OF PREPONDERANTLY CONTINUOUS FUNCTIONS [J].
Kowalczyk, Stanislaw .
REAL ANALYSIS EXCHANGE, 2012, 38 (01) :241-255
[46]   On S-approximately continuous functions [J].
Wiertelak, Renata .
LITHUANIAN MATHEMATICAL JOURNAL, 2021, 61 (01) :96-105
[47]   On ωe∗-Continuous Functions and Related Topics [J].
Sasmaz, Pinar ;
Ozkoc, Murad ;
Acharjee, Santanu .
SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2024, 48 (03) :321-337
[48]   A NOTE ON CONTINUOUS FUNCTIONS ON METRIC SPACES [J].
Sanders, Sam .
BULLETIN OF SYMBOLIC LOGIC, 2024, 30 (03) :398-420
[49]   On weakly (τ1, τ2)-continuous functions [J].
Boonpok, Chawalit ;
Klanarong, Chalongchai .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (01) :416-425
[50]   Algebrability of S-continuous functions [J].
Strobin, Filip ;
Wiertelak, Renata .
TOPOLOGY AND ITS APPLICATIONS, 2017, 231 :373-385