Plasticity, hippocampal place cells, and cognitive maps

被引:99
作者
Shapiro, M
机构
[1] Mt Sinai Sch Med, Kastor Neurobiol Aging Ctr, Fishberg Res Ctr Neurobiol, New York, NY 10029 USA
[2] Mt Sinai Sch Med, Dept Geriatr & Adult Dev, New York, NY 10029 USA
关键词
D O I
10.1001/archneur.58.6.874
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Memory of even the briefest event can last a lifetime. Thus, learning and memory require neuronal mechanisms that allow rapid, yet persistent, changes to brain circuits. Hippocampal neuropsychology, synaptic and cellular electrophysiology, pharmacology, and molecular genetics converge and begin to reveal these mechanisms. Lesions of the hippocampus profoundly impair memory for recent events in humans and rodents. Circuits within the hippocampus are remarkably plastic, and this plasticity is mediated in part through changes in synaptic strength and revealed by long-term potentiation (LTP) and longterm depression (LTD). N-methyl D-aspartate (NMDA) receptors, a subtype of glutamate receptor, are crucial for inducing these plastic changes, and blocking these receptors reduces plasticity and impairs learning in tasks that require the hippocampus. Molecular genetic alterations that disrupt signaling mechanisms downstream of the NMDA receptor also prevent LTP induction and impair hippocampus-dependent learning. N-methyl D-aspartate receptor mechanisms have also been linked to information coding by hippocampal neurons. Hippocampal cells fire selectively in specific and restricted locations (place: fields) as rodents move through open environments. Place fields form within minutes and persist for months. N-methyl D-aspartate receptor antagonists prevent the establishment of stable place fields. The same molecular genetic manipulations that interfere with hippocampal NMDA receptor function, prevent LTP induction, and impair spatial learning also disrupt the formation of stable hippocampal place fields. Finally, learning has been improved in mice with genetically modified NMDA receptors that enhance LTP induction. Thus, hippocampal cells "learn" to encode the salient features of experience through NMDA receptor-dependent synaptic plasticity mechanisms, and this rapid and persistent neuronal encoding is a crucial step toward the formation of long-term memory. Disruption of these plasticity mechanisms may underlie age-related memory deficits.
引用
收藏
页码:874 / 881
页数:8
相关论文
共 28 条
[1]   Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory [J].
Abel, T ;
Nguyen, PV ;
Barad, M ;
Deuel, TAS ;
Kandel, ER .
CELL, 1997, 88 (05) :615-626
[2]   THE 3-DIMENSIONAL ORGANIZATION OF THE HIPPOCAMPAL-FORMATION - A REVIEW OF ANATOMICAL DATA [J].
AMARAL, DG ;
WITTER, MP .
NEUROSCIENCE, 1989, 31 (03) :571-591
[3]   Multistability of cognitive maps in the hippocampus of old rats [J].
Barnes, CA ;
Suster, MS ;
Shen, JM ;
McNaughton, BL .
NATURE, 1997, 388 (6639) :272-275
[4]  
BLISS TVP, 1973, J PHYSIOL-LONDON, V232, P357, DOI 10.1113/jphysiol.1973.sp010274
[5]   LONG-LASTING POTENTIATION OF SYNAPTIC TRANSMISSION IN DENTATE AREA OF ANESTHETIZED RABBIT FOLLOWING STIMULATION OF PERFORANT PATH [J].
BLISS, TVP ;
LOMO, T .
JOURNAL OF PHYSIOLOGY-LONDON, 1973, 232 (02) :331-356
[6]   Abnormal hippocampal spatial representations in αCaMKIIT286A and CREBαΔ- mice [J].
Cho, YH ;
Giese, KP ;
Tanila, H ;
Silva, AJ ;
Eichenbaum, H .
SCIENCE, 1998, 279 (5352) :867-869
[7]   EXCITATORY AMINO-ACIDS IN SYNAPTIC TRANSMISSION IN THE SCHAFFER COLLATERAL COMMISSURAL PATHWAY OF THE RAT HIPPOCAMPUS [J].
COLLINGRIDGE, GL ;
KEHL, SJ ;
MCLENNAN, H .
JOURNAL OF PHYSIOLOGY-LONDON, 1983, 334 (JAN) :33-46
[8]   The hippocampus, memory, and place cells: Is it spatial memory or a memory space? [J].
Eichenbaum, H ;
Dudchenko, P ;
Wood, E ;
Shapiro, M ;
Tanila, H .
NEURON, 1999, 23 (02) :209-226
[9]  
Hebb D.O., 1949, The organization of behavior-A neuropsychological theory
[10]  
Keefe J.O., 1978, HIPPOCAMPUS COGNITIV