Modeling of encapsulation of Cystine amino acid inside a single-walled carbon nanotube

被引:4
|
作者
Al Garalleh, Hakim [1 ]
机构
[1] Univ Business & Technol, Coll Engn, Dept Math Sci, Jeddah 21361, Saudi Arabia
关键词
Carbon Nanotubes (CNTs); Cystine Amino Acid; Encapsulation; Potential Energy; van der Waals Interaction; Continuum Approximation; Lennard-Jones Potential; DRUG-DELIVERY; MOLECULAR-DYNAMICS; ADSORPTION; NANOPARTICLES; INHIBITION; BIOSENSORS; MECHANICS; PEPTIDES; ENERGIES;
D O I
10.1166/mex.2017.1389
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Carbon nanotubes are very important types of nano-materials that are capable of transportation of different biomolecules, through their external and internal walls, to the targeted cells. In this paper, we model the interaction which is arising from the encapsulation of Cystine amino acid inside a single-walled carbon nanotube. Carbon nanotube are selective and excellent nano-devices because of their huge potential that is used in protein delivery and disease treatment. We consider two possible structures as models of Cystine amino acid which are an ellipsoid and cylinder group of atoms. We adopt the Lennard-Jones potential and continuum approach to obtain the interaction energy for each configuration. Our results indicate that the radius of nanotube plays a critical role in determining the magnitude of total energy and the encapsulation of Cystine occurs when r > 3.391 A which are in a very good agreement with recent experimental studies. Our model predicts that the scientific researchers could design and develop new nano-devices with distinct properties to avoid the energetic barriers and increase the ability of nanoube for maximum loading of targeted drug delivery.
引用
收藏
页码:389 / 397
页数:9
相关论文
共 50 条
  • [41] Single-walled carbon nanotube as an effective quencher
    Zhi Zhu
    Ronghua Yang
    Mingxu You
    Xiaoling Zhang
    Yanrong Wu
    Weihong Tan
    Analytical and Bioanalytical Chemistry, 2010, 396 : 73 - 83
  • [42] Single-walled carbon nanotube - amylopectin complexes
    Stobinski, L
    Tomasik, P
    Lii, CY
    Chan, HH
    Lin, HM
    Liu, HL
    Kao, CT
    Lu, KS
    CARBOHYDRATE POLYMERS, 2003, 51 (03) : 311 - 316
  • [43] Chaos in an embedded single-walled carbon nanotube
    Weipeng Hu
    Zichen Deng
    Bo Wang
    Huajiang Ouyang
    Nonlinear Dynamics, 2013, 72 : 389 - 398
  • [44] Exciton distribution on single-walled carbon nanotube
    Lue, Y.
    Liu, H.
    Gu, B.
    EUROPEAN PHYSICAL JOURNAL B, 2010, 74 (04): : 499 - 506
  • [45] Twisting of single-walled carbon nanotube bundles
    Qin, LC
    Iijima, S
    AMORPHOUS AND NANOSTRUCTURED CARBON, 2000, 593 : 33 - 38
  • [46] Single-walled carbon nanotube network ultramicroelectrodes
    Dumitrescu, Ioana
    Unwin, Patrick R.
    Wilson, Neil R.
    Macpherson, Julie V.
    ANALYTICAL CHEMISTRY, 2008, 80 (10) : 3598 - 3605
  • [47] Single-walled carbon nanotube as an effective quencher
    Zhu, Zhi
    Yang, Ronghua
    You, Mingxu
    Zhang, Xiaoling
    Wu, Yanrong
    Tan, Weihong
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 396 (01) : 73 - 83
  • [48] Impedance of Single-Walled Carbon Nanotube Fibers
    Ksenevich, V. K.
    Gorbachuk, N. I.
    Poklonski, N. A.
    Samuilov, V. A.
    Kozlov, M. E.
    Wieck, A. D.
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2012, 20 (4-7) : 434 - 438
  • [49] Single-walled 4 Å carbon nanotube arrays
    N. Wang
    Z. K. Tang
    G. D. Li
    J. S. Chen
    Nature, 2000, 408 : 50 - 51
  • [50] Single-walled carbon nanotube growth on glass
    Bae, Eun Ju
    Min, Yo-Sep
    Kim, Unjeong
    Park, Wanjun
    NANOTECHNOLOGY, 2007, 18 (01)