Composite Kernel of Mutual Learning on Mid-Level Features for Hyperspectral Image Classification

被引:9
|
作者
Sima, Haifeng [1 ]
Wang, Jing [1 ]
Guo, Ping [2 ]
Sun, Junding [1 ]
Liu, Hongmin [1 ]
Xu, Mingliang [3 ]
Zou, Youfeng [4 ]
机构
[1] Henan Polytech Univ, Dept Comp Sci & Technol, Jiaozuo 454003, Henan, Peoples R China
[2] Beijing Normal Univ, Sch Syst Sci, Image Proc & Pattern Recognit Lab, Beijing 100875, Peoples R China
[3] Zhengzhou Univ, Ctr Interdisciplinary Informat Sci Res, Zhengzhou 450001, Peoples R China
[4] Henan Polytech Univ, Dept Surveying & Land Informat Engn, Jiaozuo 454003, Henan, Peoples R China
关键词
Kernel; Feature extraction; Nonhomogeneous media; Image reconstruction; Transfer learning; Training; Optimization; Hyperspectral image (HSI) classification; midlevel features; multilayer superpixels; multiple kernel learning; mutual learning; sparse representation; REGULARIZATION; SELECTION;
D O I
10.1109/TCYB.2021.3080304
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
By training different models and averaging their predictions, the performance of the machine-learning algorithm can be improved. The performance optimization of multiple models is supposed to generalize further data well. This requires the knowledge transfer of generalization information between models. In this article, a multiple kernel mutual learning method based on transfer learning of combined mid-level features is proposed for hyperspectral classification. Three-layer homogenous superpixels are computed on the image formed by PCA, which is used for computing mid-level features. The three mid-level features include: 1) the sparse reconstructed feature; 2) combined mean feature; and 3) uniqueness. The sparse reconstruction feature is obtained by a joint sparse representation model under the constraint of three-scale superpixels' boundaries and regions. The combined mean features are computed with average values of spectra in multilayer superpixels, and the uniqueness is obtained by the superposed manifold ranking values of multilayer superpixels. Next, three kernels of samples in different feature spaces are computed for mutual learning by minimizing the divergence. Then, a combined kernel is constructed to optimize the sample distance measurement and applied by employing SVM training to build classifiers. Experiments are performed on real hyperspectral datasets, and the corresponding results demonstrated that the proposed method can perform significantly better than several state-of-the-art competitive algorithms based on MKL and deep learning.
引用
收藏
页码:12217 / 12230
页数:14
相关论文
共 50 条
  • [41] Mid-level image representations for real-time heart view plane classification of echocardiograms
    Penatti, Otavio A. B.
    Werneck, Rafael de O.
    de Almeida, Waldir R.
    Stein, Bernardo V.
    Pazinato, Daniel V.
    Mendes Junior, Pedro R.
    Torres, Ricardo da S.
    Rocha, Anderson
    COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 66 : 66 - 81
  • [42] Kernel Sparse Multitask Learning for Hyperspectral Image Classification With Empirical Mode Decomposition and Morphological Wavelet-Based Features
    He, Zhi
    Wang, Qiang
    Shen, Yi
    Sun, Mingjian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (08): : 5150 - 5163
  • [43] Multitask Deep Learning With Spectral Knowledge for Hyperspectral Image Classification
    Liu, Shengjie
    Shi, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (12) : 2110 - 2114
  • [44] Spatial-Spectral Graph Regularized Kernel Sparse Representation for Hyperspectral Image Classification
    Liu, Jianjun
    Xiao, Zhiyong
    Chen, Yufeng
    Yang, Jinlong
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2017, 6 (08):
  • [45] Spectral-Spatial Masked Transformer With Supervised and Contrastive Learning for Hyperspectral Image Classification
    Huang, Lingbo
    Chen, Yushi
    He, Xin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [46] Deep Multiview Learning for Hyperspectral Image Classification
    Liu, Bing
    Yu, Anzhu
    Yu, Xuchu
    Wang, Ruirui
    Gao, Kuiliang
    Guo, Wenyue
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 7758 - 7772
  • [47] Adversarial Prototype Learning for Hyperspectral Image Classification
    Wang, Shuai
    Du, Bo
    Zhang, Dingwen
    Wan, Fang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [48] Learning Hierarchical Spectral-Spatial Features for Hyperspectral Image Classification
    Zhou, Yicong
    Wei, Yantao
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (07) : 1667 - 1678
  • [49] Active Multiple Kernel Fredholm Learning for Hyperspectral Images Classification
    Saboori, Arash
    Ghassemian, Hassan
    Razzazi, Farbod
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (02) : 356 - 360
  • [50] Composite kernels for hyperspectral image classification
    Camps-Valls, G
    Gomez-Chova, L
    Muñoz-Marí, J
    Vila-Francés, J
    Calpe-Maravilla, J
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (01) : 93 - 97