Comparing the intrinsic dynamics of multiple protein structures using elastic network models

被引:57
作者
Fuglebakk, Edvin
Tiwari, Sandhya P.
Reuter, Nathalie [1 ]
机构
[1] Univ Bergen, Dept Mol Biol, N-5020 Bergen, Norway
来源
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS | 2015年 / 1850卷 / 05期
关键词
Elastic network models; Protein dynamics; Intrinsic dynamics; Normal mode analysis; GRAINED BIOMOLECULAR SIMULATION; FREQUENCY NORMAL-MODES; MOLECULAR-DYNAMICS; CONFORMATIONAL TRANSITIONS; DOMAIN MOTIONS; EVOLUTIONARY CONSERVATION; ALLOSTERIC TRANSITIONS; PRINCIPAL COMPONENT; CORE DEFORMATIONS; SINGLE-PARAMETER;
D O I
10.1016/j.bbagen.2014.09.021
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Elastic network models (ENMs) are based on the simple idea that a protein can be described as a set of particles connected by springs, which can then be used to describe its intrinsic flexibility using, for example, normal mode analysis. Since the introduction of the first ENM by Monique Tirion in 1996, several variants using coarser protein models have been proposed and their reliability for the description of protein intrinsic dynamics has been widely demonstrated. Lately an increasing number of studies have focused on the meaning of slow dynamics for protein function and its potential conservation through evolution. This leads naturally to comparisons of the intrinsic dynamics of multiple protein structures with varying levels of similarity. Scope of review: We describe computational strategies for calculating and comparing intrinsic dynamics of multiple proteins using elastic network models, as well as a selection of examples from the recent literature. Major conclusions: The increasing interest for comparing dynamics across protein structures with various levels of similarity, has led to the establishment and validation of reliable computational strategies using ENMs. Comparing dynamics has been shown to be a viable way for gaining greater understanding for the mechanisms employed by proteins for their function. Choices of ENM parameters, structure alignment or similarity measures will likely influence the interpretation of the comparative analysis of protein motion. General significance: Understanding the relation between protein function and dynamics is relevant to the fundamental understanding of protein structure-dynamics-function relationship. This article is part of a Special Issue entitled Recent developments of molecular dynamics. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
引用
收藏
页码:911 / 922
页数:12
相关论文
共 133 条
[1]  
Amadei A, 1999, PROTEINS, V36, P419, DOI 10.1002/(SICI)1097-0134(19990901)36:4<419::AID-PROT5>3.3.CO
[2]  
2-L
[3]   Anisotropy of fluctuation dynamics of proteins with an elastic network model [J].
Atilgan, AR ;
Durell, SR ;
Jernigan, RL ;
Demirel, MC ;
Keskin, O ;
Bahar, I .
BIOPHYSICAL JOURNAL, 2001, 80 (01) :505-515
[4]   Perturbation-Response Scanning Reveals Ligand Entry-Exit Mechanisms of Ferric Binding Protein [J].
Atilgan, Canan ;
Atilgan, Ali Rana .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (10)
[5]   Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential [J].
Bahar, I ;
Atilgan, AR ;
Erman, B .
FOLDING & DESIGN, 1997, 2 (03) :173-181
[6]   Evol and ProDy for bridging protein sequence evolution and structural dynamics [J].
Bakan, Ahmet ;
Dutta, Anindita ;
Mao, Wenzhi ;
Liu, Ying ;
Chennubhotla, Chakra ;
Lezon, Timothy R. ;
Bahar, Ivet .
BIOINFORMATICS, 2014, 30 (18) :2681-2683
[7]   ProDy: Protein Dynamics Inferred from Theory and Experiments [J].
Bakan, Ahmet ;
Meireles, Lidio M. ;
Bahar, Ivet .
BIOINFORMATICS, 2011, 27 (11) :1575-1577
[8]   The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding [J].
Bakan, Ahmet ;
Bahar, Ivet .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (34) :14349-14354
[9]   Accuracy analysis of multiple structure alignments [J].
Berbalk, Christoph ;
Schwaiger, Christine S. ;
Lackner, Peter .
PROTEIN SCIENCE, 2009, 18 (10) :2027-2035
[10]   NORMAL-MODES FOR SPECIFIC MOTIONS OF MACROMOLECULES - APPLICATION TO THE HINGE-BENDING MODE OF LYSOZYME [J].
BROOKS, B ;
KARPLUS, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (15) :4995-4999