A deep neural network with subdomain adaptation for motor imagery brain-computer interface

被引:10
作者
Zheng, Minmin [1 ,2 ]
Yang, Banghua [1 ]
机构
[1] Shanghai Univ, Res Ctr Brain Comp Engn, Sch Mechatron Engn & Automat, Shanghai, Peoples R China
[2] Putian Univ, Sch Mech & Elect Engn, Putian, Fujian, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Motor imagery (MI); Transfer learning; Local maximum mean discrepancy (LMMD); Distance within each class (DWC); Distance between classes within each domain (DBCWD); EEG; CLASSIFICATION;
D O I
10.1016/j.medengphy.2021.08.006
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Background: The nonstationarity problem of EEG is very serious, especially for spontaneous signals, which leads to the poor effect of machine learning related to spontaneous signals, especially in related tasks across time, which correspondingly limits the practical use of brain-computer interface (BCI). Objective: In this paper, we proposed a new transfer learning algorithm, which can utilize the labeled motor imagery (MI) EEG data at the previous time to achieve better classification accuracies for a small number of labeled EEG signals at the current time. Methods: We introduced an adaptive layer into the full connection layer of a deep convolution neural network. The objective function of the adaptive layer was designed to minimize the Local Maximum Mean Discrepancy (LMMD) and the prediction error while minimizing the distance within each class (DWC) and maximizing the distance between classes within each domain (DBCWD). We verified the effectiveness of the proposed algorithm on two public datasets. Results: The classification accuracy of the proposed algorithm was higher than other comparison algorithms, and the paired t-test results also showed that the performance of the proposed algorithm was significantly different from that of other algorithms. The results of the confusion matrix and feature visualization showed the effectiveness of the proposed algorithm. Conclusion: Experimental results showed that the proposed algorithm can achieve higher classification accuracy than other algorithms when there was only a small amount of labeled MI EEG data at the current time. It can be promising to be applied to the field of BCI.
引用
收藏
页码:29 / 40
页数:12
相关论文
共 50 条
  • [41] Feature fusion for improving performance of motor imagery brain-computer interface system
    Radman, Moein
    Chaibakhsh, Ali
    Nariman-zadeh, Nader
    He, Huiguang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 68
  • [42] A Hybrid Transfer Learning Approach for Motor Imagery Classification in Brain-Computer Interface
    Wang, Xuying
    Yang, Rui
    Huang, Mengjie
    Yang, Zhengni
    Wan, Zitong
    2021 IEEE 3RD GLOBAL CONFERENCE ON LIFE SCIENCES AND TECHNOLOGIES (IEEE LIFETECH 2021), 2021, : 496 - 500
  • [43] Mechanical Vibrotactile Stimulation Effect in Motor Imagery based Brain-computer Interface
    Yao, Lin
    Sheng, Xinjun
    Meng, Jianjun
    Zhang, Dingguo
    Zhu, Xiangyang
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 2772 - 2775
  • [44] Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates
    Vasilyev, Anatoly
    Liburkina, Sofya
    Yakovlev, Lev
    Perepelkina, Olga
    Kaplan, Alexander
    NEUROPSYCHOLOGIA, 2017, 97 : 56 - 65
  • [45] Symmetrical feature for interpreting motor imagery EEG signals in the brain-computer interface
    Park, Seung-Min
    Yu, Xinyang
    Chum, Pharino
    Lee, Woo-Young
    Sim, Kwee-Bo
    OPTIK, 2017, 129 : 163 - 171
  • [46] Motor Priming as a Brain-Computer Interface
    Stewart, Tom
    Hoshino, Kiyoshi
    Cichocki, Andrzej
    Rutkowski, Tomasz M.
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT II, 2016, 9948 : 538 - 545
  • [47] Improvement of brain-computer interface in motor imagery training through the designing of a dynamic experiment and FBCSP
    Lin, Chun-Ling
    Chen, Liang-Ting
    HELIYON, 2023, 9 (03)
  • [48] SOURCES OF EEG ACTIVITY MOST RELEVANT TO PERFORMANCE OF BRAIN-COMPUTER INTERFACE BASED ON MOTOR IMAGERY
    Frolov, Alexander
    Husek, Dusan
    Bobrov, Pavel
    Korshakov, Alexey
    Chernikova, Lyudmila
    Konovalov, Rodion
    Mokienko, Olesya
    NEURAL NETWORK WORLD, 2012, 22 (01) : 21 - 37
  • [49] A Fully Automated Trial Selection Method for Optimization of Motor Imagery Based Brain-Computer Interface
    Zhou, Bangyan
    Wu, Xiaopei
    Lv, Zhao
    Zhang, Lei
    Guo, Xiaojin
    PLOS ONE, 2016, 11 (09):
  • [50] Signal processing algorithms for motor imagery brain-computer interface:State of the art
    Hong, Jie
    Qin, Xiansheng
    Li, Jing
    Niu, Junlong
    Wang, Wenjie
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (06) : 6405 - 6419