Linear and nonlinear information flow in spatially extended systems

被引:17
作者
Cencini, M
Torcini, A
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy
[3] Ist Nazl Fis Mat, UdR Firenze, I-50125 Florence, Italy
关键词
D O I
10.1103/PhysRevE.63.056201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Infinitesimal and finite amplitude error propagation in spatially extended systems are numerically and theoretically investigated. The information transport in these systems can be characterized in terms of the propagation velocity of perturbations V-p. A linear stability analysis is sufficient to capture all the relevant aspects associated to propagation of infinitesimal disturbances. In particular, this analysis gives the propagation velocity V-L of infinitesimal errors. If linear mechanisms prevail on the nonlinear ones V-p = V-L. On the contrary, if nonlinear effects an predominant finite amplitude disturbances can eventually propagate faster than infinitesimal ones (i.e., V-p > V-L). The finite size Lyapunov exponent can be successfully employed to discriminate the linear or nonlinear origin of information flow. A generalization of the finite size Lyapunov exponent to a comoving reference frame allows us to state a marginal stability criterion able to provide V-p both in the linear and in the nonlinear case. Strong analogies are found between information spreading and propagation of fronts connecting steady states in reaction-diffusion systems. The analysis of the common characteristics of these two phenomena leads to a better understanding of the role played by linear and nonlinear mechanisms for the flow of information in spatially extended systems.
引用
收藏
页码:562011 / 5620113
页数:13
相关论文
共 44 条
[1]   Ballistic and diffusive corrections to front propagation in the presence of multiplicative noise [J].
Armero, J ;
Casademunt, J ;
Ramirez-Piscina, L ;
Sancho, JM .
PHYSICAL REVIEW E, 1998, 58 (05) :5494-5500
[2]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[3]   Predictability in the large: An extension of the concept of Lyapunov exponent [J].
Aurell, E ;
Boffetta, G ;
Crisanti, A ;
Paladin, G ;
Vulpiani, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (01) :1-26
[4]   Growth of noninfinitesimal perturbations in turbulence [J].
Aurell, E ;
Boffetta, G ;
Crisanti, A ;
Paladin, G ;
Vulpiani, A .
PHYSICAL REVIEW LETTERS, 1996, 77 (07) :1262-1265
[5]   Transition to stochastic synchronization in spatially extended systems [J].
Baroni, L ;
Livi, R ;
Torcini, A .
PHYSICAL REVIEW E, 2001, 63 (03) :362261-362261
[6]  
Benettin G., 1980, MECCANICA, V15, P21, DOI DOI 10.1007/BF02128237
[7]  
BOFFETTA G, NLINCD0101029
[8]   A MECHANISM FOR LOCALIZED TURBULENCE [J].
BOHR, T ;
RAND, DA .
PHYSICA D, 1991, 52 (2-3) :532-543
[9]   Macroscopic chaos in globally coupled maps [J].
Cencini, M ;
Falcioni, M ;
Vergni, D ;
Vulpiani, A .
PHYSICA D, 1999, 130 (1-2) :58-72
[10]   ARE ATTRACTORS RELEVANT TO TURBULENCE [J].
CRUTCHFIELD, JP ;
KANEKO, K .
PHYSICAL REVIEW LETTERS, 1988, 60 (26) :2715-2718