An elementary rigorous proof of bulk-boundary correspondence in the generalized Su-Schrieffer-Heeger model

被引:41
作者
Chen, Bo-Hung [1 ,2 ]
Chiou, Dah-Wei [2 ,3 ,4 ]
机构
[1] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
[2] Natl Taiwan Normal Univ, Dept Phys, Taipei 11677, Taiwan
[3] Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 80424, Taiwan
[4] Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 10617, Taiwan
关键词
Topological insulator; Bulk-boundary correspondence; Generalized Su-Schrieffer-Heeger model; Edge states; Winding number; SOLITONS; NUMBER;
D O I
10.1016/j.physleta.2019.126168
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize the Su-Schrieffer-Heeger (SSH) model with the inclusion of arbitrary long-range hopping amplitudes, providing a simple framework to investigate arbitrary adiabatic deformations that preserve the chiral symmetry upon the bulk energy bands with any arbitrary winding numbers. Using only elementary techniques of solving linear difference equations and applying Cauchy's integral formula, we obtain a mathematically rigorous and physically transparent proof of the bulk-boundary correspondence for the generalized SSH model. The multiplicity of robust zero-energy edge modes is shown to be identical to the winding number. On the other hand, nonzero-energy edge modes, if any, are shown to be unstable under adiabatic deformations and not related to the topological invariant. Furthermore, under deformations of small spatial disorder, the zero-energy edge modes remain robust (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 18 条
  • [1] Asboth J. K., 2016, Lect. Notes Phys., V919, P166
  • [2] Bulk-edge correspondence in (2+1)-dimensional Abelian topological phases
    Cano, Jennifer
    Cheng, Meng
    Mulligan, Michael
    Nayak, Chetan
    Plamadeala, Eugeniu
    Yard, Jon
    [J]. PHYSICAL REVIEW B, 2014, 89 (11)
  • [3] Bulk-boundary correspondence of topological insulators from their respective Green's functions
    Essin, Andrew M.
    Gurarie, Victor
    [J]. PHYSICAL REVIEW B, 2011, 84 (12):
  • [4] Bulk-Edge Correspondence for Two-Dimensional Topological Insulators
    Graf, Gian Michele
    Porta, Marcello
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 324 (03) : 851 - 895
  • [5] Colloquium: Topological insulators
    Hasan, M. Z.
    Kane, C. L.
    [J]. REVIEWS OF MODERN PHYSICS, 2010, 82 (04) : 3045 - 3067
  • [6] Bulk-edge correspondence in graphene with/without magnetic field: Chiral symmetry, Dirac fermions and edge states
    Hatsugai, Y.
    [J]. SOLID STATE COMMUNICATIONS, 2009, 149 (27-28) : 1061 - 1067
  • [7] CHERN NUMBER AND EDGE STATES IN THE INTEGER QUANTUM HALL-EFFECT
    HATSUGAI, Y
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (22) : 3697 - 3700
  • [8] SOLITONS IN CONDUCTING POLYMERS
    HEEGER, AJ
    KIVELSON, S
    SCHRIEFFER, JR
    SU, WP
    [J]. REVIEWS OF MODERN PHYSICS, 1988, 60 (03) : 781 - 850
  • [9] SOLITONS WITH FERMION NUMBER 1/2
    JACKIW, R
    REBBI, C
    [J]. PHYSICAL REVIEW D, 1976, 13 (12) : 3398 - 3409
  • [10] LAUGHLIN RB, 1981, PHYS REV B, V23, P5632, DOI 10.1103/PhysRevB.23.5632