Thermal Analysis of Parabolic Trough Solar Collector and Assessment of Steam Power Potential at Two Locations in Cameroon

被引:0
|
作者
Nguimdo, L. Akana [1 ]
Teka, Josiane [2 ]
Fopossie, Frank D. [2 ]
机构
[1] Univ Buea, Fac Engn & Technol, Dept Elect & Elect Engn, POB 63, Buea, Cameroon
[2] Univ Yaounde I, Environm Energy Technol Lab EETL, Fac Sci, POB 812, Yaounde, Cameroon
来源
关键词
Parabolic Trough Collector; Steam Potential; Heat Exchange; Generation Mode; Calorific Fluid; PERFORMANCE; PLANT;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
the past two decades, Cameroon has devoted enormous financial resources to the construction of thermal power plants operating on Heavy Fuel Oil. Despite these efforts, it has been noted that the production of electricity from fossil sources has not been up to the expectations of the population. In this context, it becomes a necessity to explore other sources of energy production most precisely renewable sources. This paper is concerned with the assessment of the steam production potential from solar sources in the stations of Maroua and Yaounde using Parabolic Trough Collectors. Two production modes are considered in this study: The direct mode using water and the indirect mode with TherminolVP1 as heat transfer fluid. The system is modeled based on the study of the energy balance between the receiver and the calorific fluids in order to assess the impact of the irradiance on the calorific fluid outlet temperature at hourly time scale over the day. The assessment of the collector characteristics shows an optical efficiency varying between 0.73 and 0.75 while the overall heat loss coefficient extends over wide ranges depending on the environmental conditions and generation mode. It was shown that the temperature of the steam increases with the number of collectors. For an association of 8 collectors, the average daily production time of pressurized steam at 40bars is 8 hours with a maximum temperature of 600 degrees C in direct mode and 490 degrees C in indirect mode for the month of February in Maroua. The maximum thermal efficiency for the same month is 72.7% in direct generation and 60.7% in indirect generation. These results confirm the real steam potential for electricity generation for complementing existing heavy fuel oil stations with solar sources for better supply. However, further investigations about the energy demand and the supply are necessary for appropriate sizing of the solar generator.
引用
收藏
页码:1136 / 1148
页数:13
相关论文
共 50 条
  • [11] Optimization of concentrating solar thermal power plant based on parabolic trough collector
    Desai, Nishith B.
    Bandyopadhyay, Santanu
    JOURNAL OF CLEANER PRODUCTION, 2015, 89 : 262 - 271
  • [12] Modeling and Simulation of Solar Thermal Power System Using Parabolic Trough Collector
    Najjar, Yousef S. H.
    Sadeq, Jawad
    JOURNAL OF ENERGY ENGINEERING, 2017, 143 (02)
  • [13] Energy analysis of a hybrid parabolic trough collector with a steam power plant in Jordan
    Asfar, Jamil Al
    Alrbai, Mohammad
    Qudah, Nezar
    ENERGY EXPLORATION & EXPLOITATION, 2023, 41 (06) : 1850 - 1868
  • [14] Dynamic 6E analysis of direct steam generator solar parabolic trough collector power plant with thermal energy storage
    Yazdi, Mohsen
    Manesh, Mohammad Hasan Khoshgoftar
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 49
  • [15] Design and Implementation of Parabolic Trough Solar Thermal Collector
    Tahjib, Alam
    Tanzin, Humaiya
    Azim, Hasan
    Rahman, S. M. Imrat
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 670 - 673
  • [16] Collector development for solar parabolic trough power plants
    Schiel, Wolfgang
    BAUTECHNIK, 2012, 89 (03) : 182 - 191
  • [17] Analysis and design consideration of solar steam generation plant using parabolic trough collector
    Bataineh, Khaled
    MECHANIKA, 2015, (05): : 384 - 392
  • [18] Thermal Performance Analysis of Parabolic Trough Collector
    Bhakta, Amit Kumar
    Kumar, Sunil
    Singh, Shailendra Narayan
    PROCEEDINGS OF THE 25TH NATIONAL AND 3RD INTERNATIONAL ISHMT-ASTFE HEAT AND MASS TRANSFER CONFERENCE, IHMTC 2019, 2019,
  • [19] ULTIMATE TROUGH - THE NEW PARABOLIC TROUGH COLLECTOR GENERATION FOR LARGE SCALE SOLAR THERMAL POWER PLANTS
    Riffelmann, Klaus-Juergen
    Graf, Daniela
    Nava, Paul
    PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C, 2012, : 789 - 794
  • [20] Ultimate trough - The new parabolic trough collector generation for large scale solar thermal power plants
    Flabeg Holding GmbH, Cologne, Germany
    ASME Int. Conf. Energy Sustainability, ES, PARTS A, B, AND C (789-794):