Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice

被引:260
作者
Wang, Pan [1 ,2 ]
Li, Daotong [1 ,2 ]
Ke, Weixin [1 ,2 ]
Liang, Dong [1 ,2 ]
Hu, Xiaosong [1 ,2 ]
Chen, Fang [1 ,2 ]
机构
[1] China Agr Univ, Coll Food Sci & Nutr Engn, Natl Engn Res Ctr Fruit & Vegetable Proc, Key Lab Fruits & Vegetables Proc,Minist Agr, Beijing 100083, Peoples R China
[2] China Agr Univ, Minist Educ, Engn Res Ctr Fruits & Vegetables Proc, Beijing 100083, Peoples R China
关键词
INTESTINAL MICROBIOTA; CLOSTRIDIUM-DIFFICILE; INSULIN SENSITIVITY; ADIPOSE-TISSUE; INFLAMMATION; BARRIER; HOST; BIOAVAILABILITY; STRESS; HOMEOSTASIS;
D O I
10.1038/s41366-019-0332-1
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective Resveratrol (RSV) is a natural polyphenol with putative anti-obesity effects; however, its mechanisms of action remain unclear due to its low bioavailability. Microbial functions in the physiology result from the microbiota-host coevolution has profoundly affected host metabolism. Here, we sought to determine how beneficial microbiome caused by RSV interventions affects antiobesity. Methods C57BL/6J mice were fed either standard diet (SD) or RSV (300 mg/kg/day) diet for 16 weeks. The composition of the gut microbiota was assessed by analyzing 16S rRNA gene sequences. Then, transplant the RSV-microbiota to high-fat diet (HFD)-fed mice (HFD-RSVT) to explore the function of microbiota. Body weight and food intake were monitored. Markers of lipid metabolism, inflammation, gut microbiota compostion, and intestinal barrier were determined. Results Mice treated with RSV shows a remarkable alteration in microbiota composition compared with that of SD-fed mice and is characterized by an enrichment of Bacteroides, Lachnospiraceae_NK4A136_group, Blautia, Lachnoclostridium, Parabacteroides, and Ruminiclostridium_9, collectively referred to as RSV-microbiota. We further explored whether RSV-microbiota has anti-obesity functions. Transplantation of the RSV-microbiota to high-fat diet (HFD)-fed mice (HFD-RSVT) was sufficient to decrease their weight gain and increase their insulin sensitivity. Moreover, RSV-microbiota was able to modulate lipid metabolism, stimulate the development of beige adipocytes in WAT, reduce inflammation and improve intestinal barrier function. Conclusions Our study demonstrates that RSV-induced microbiota plays a key role in controlling obesity development and brings new insights to a potential therapy based on host-microbe interactions.
引用
收藏
页码:213 / 225
页数:13
相关论文
共 70 条
[1]   A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice [J].
Anhe, Fernando F. ;
Roy, Denis ;
Pilon, Genevieve ;
Dudonne, Stephanie ;
Matamoros, Sebastien ;
Varin, Thibault V. ;
Garofalo, Carole ;
Moine, Quentin ;
Desjardins, Yves ;
Levy, Emile ;
Marette, Andre .
GUT, 2015, 64 (06) :872-883
[2]  
[Anonymous], 2016, OB OV
[3]   The gut microbiota as an environmental factor that regulates fat storage [J].
Bäckhed, F ;
Ding, H ;
Wang, T ;
Hooper, LV ;
Koh, GY ;
Nagy, A ;
Semenkovich, CF ;
Gordon, JI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (44) :15718-15723
[4]   Mechanisms underlying the resistance to diet-induced obesity in germ-free mice [J].
Backhed, Fredrik ;
Manchester, Jill K. ;
Semenkovich, Clay F. ;
Gordon, Jeffrey I. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (03) :979-984
[5]   Baicalein induces CD4+Foxp3+T cells and enhances intestinal barrier function in a mouse model of food allergy [J].
Bae, Min-Jung ;
Shin, Hee Soon ;
See, Hye-Jeong ;
Jung, Sun Young ;
Kwon, Da-Ae ;
Shon, Dong-Hwa .
SCIENTIFIC REPORTS, 2016, 6
[6]   Mucin-type O-glycans and their roles in intestinal homeostasis [J].
Bergstrom, Kirk S. B. ;
Xia, Lijun .
GLYCOBIOLOGY, 2013, 23 (09) :1026-1037
[7]   Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling [J].
Caesar, Robert ;
Tremaroli, Valentina ;
Kovatcheva-Datchary, Petia ;
Cani, Patrice D. ;
Backhed, Fredrik .
CELL METABOLISM, 2015, 22 (04) :658-668
[8]   Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice [J].
Cani, Patrice D. ;
Bibiloni, Rodrigo ;
Knauf, Claude ;
Neyrinck, Audrey M. ;
Neyrinck, Audrey M. ;
Delzenne, Nathalle M. ;
Burcelin, Remy .
DIABETES, 2008, 57 (06) :1470-1481
[9]   Diet Dominates Host Genotype in Shaping the Murine Gut Microbiota [J].
Carmody, Rachel N. ;
Gerber, Georg K. ;
Luevano, Jesus M., Jr. ;
Gatti, Daniel M. ;
Somes, Lisa ;
Svenson, Karen L. ;
Turnbaugh, Peter J. .
CELL HOST & MICROBE, 2015, 17 (01) :72-84
[10]   Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota [J].
Chang, Chih-Jung ;
Lin, Chuan-Sheng ;
Lu, Chia-Chen ;
Martel, Jan ;
Ko, Yun-Fei ;
Ojcius, David M. ;
Tseng, Shun-Fu ;
Wu, Tsung-Ru ;
Chen, Yi-Yuan Margaret ;
Young, John D. ;
Lai, Hsin-Chih .
NATURE COMMUNICATIONS, 2015, 6