Multiple imputation with missing data indicators

被引:64
作者
Beesley, Lauren J. [1 ]
Bondarenko, Irina [1 ]
Elliot, Michael R. [1 ,2 ]
Kurian, Allison W. [3 ,4 ]
Katz, Steven J. [5 ]
Taylor, Jeremy M. G. [1 ]
机构
[1] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[2] Inst Social Res, Survey Methodol Program, Ann Arbor, MI USA
[3] Stanford Univ, Dept Med, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Epidemiol & Populat Hlth, Stanford, CA 94305 USA
[5] Univ Michigan, Dept Internal Med, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
Chained equations multiple imputation; not missing at random; missing data indicator; sequential regression multiple imputation; FULLY CONDITIONAL SPECIFICATION; WEIGHTS;
D O I
10.1177/09622802211047346
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Multiple imputation is a well-established general technique for analyzing data with missing values. A convenient way to implement multiple imputation is sequential regression multiple imputation, also called chained equations multiple imputation. In this approach, we impute missing values using regression models for each variable, conditional on the other variables in the data. This approach, however, assumes that the missingness mechanism is missing at random, and it is not well-justified under not-at-random missingness without additional modification. In this paper, we describe how we can generalize the sequential regression multiple imputation imputation procedure to handle missingness not at random in the setting where missingness may depend on other variables that are also missing but not on the missing variable itself, conditioning on fully observed variables. We provide algebraic justification for several generalizations of standard sequential regression multiple imputation using Taylor series and other approximations of the target imputation distribution under missingness not at random. Resulting regression model approximations include indicators for missingness, interactions, or other functions of the missingness not at random missingness model and observed data. In a simulation study, we demonstrate that the proposed sequential regression multiple imputation modifications result in reduced bias in the final analysis compared to standard sequential regression multiple imputation, with an approximation strategy involving inclusion of an offset in the imputation model performing the best overall. The method is illustrated in a breast cancer study, where the goal is to estimate the prevalence of a specific genetic pathogenic variant.
引用
收藏
页码:2685 / 2700
页数:16
相关论文
共 30 条
[1]  
Andridge RR, 2009, J OFF STAT, V25, P21
[2]  
[Anonymous], 2013, Multiple imputation and its application
[3]   A systematic review of the international prevalence of BRCA mutation in breast cancer [J].
Armstrong, Nigel ;
Ryder, Steve ;
Forbes, Carol ;
Ross, Janine ;
Quek, Ruben G. W. .
CLINICAL EPIDEMIOLOGY, 2019, 11 :543-561
[4]   Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model [J].
Bartlett, Jonathan W. ;
Seaman, Shaun R. ;
White, Ian R. ;
Carpenter, James R. .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2015, 24 (04) :462-487
[5]   Multiple imputation of missing covariates for the Cox proportional hazards cure model [J].
Beesley, Lauren J. ;
Bartlett, Jonathan W. ;
Wolf, Gregory T. ;
Taylor, Jeremy M. G. .
STATISTICS IN MEDICINE, 2016, 35 (26) :4701-4717
[6]  
CONSORTIUM B, 2021, NEW ENGL J MED, V384, P428
[7]   A Population-Based Study of Genes Previously Implicated in Breast Cancer [J].
Hu, Chunling ;
Hart, Steven N. ;
Gnanaolivu, Rohan ;
Huang, Hongyan ;
Lee, Kun Y. ;
Na, Jie ;
Gao, Chi ;
Lilyquist, Jenna ;
Yadav, Siddhartha ;
Boddicker, Nicholas J. ;
Samara, Raed ;
Klebba, Josh ;
Ambrosone, Christine B. ;
Anton-Culver, Hoda ;
Auer, Paul ;
Bandera, Elisa V. ;
Bernstein, Leslie ;
Bertrand, Kimberly A. ;
Burnside, Elizabeth S. ;
Carter, Brian D. ;
Eliassen, Heather ;
Gapstur, Susan M. ;
Gaudet, Mia ;
Haiman, Christopher ;
Hodge, James M. ;
Hunter, David J. ;
Jacobs, Eric J. ;
John, Esther M. ;
Kooperberg, Charles ;
Kurian, Allison W. ;
Le Marchand, Loic ;
Lindstroem, Sara ;
Lindstrom, Tricia ;
Ma, Huiyan ;
Neuhausen, Susan ;
Newcomb, Polly A. ;
O'Brien, Katie M. ;
Olson, Janet E. ;
Ong, Irene M. ;
Pal, Tuya ;
Palmer, Julie R. ;
Patel, Alpa V. ;
Reid, Sonya ;
Rosenberg, Lynn ;
Sandler, Dale P. ;
Scott, Christopher ;
Tamimi, Rulla ;
Taylor, Jack A. ;
Trentham-Dietz, Amy ;
Vachon, Celine M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (05) :440-451
[8]  
Jolani, 2012, THESIS UTRECHT U
[9]   Association of Attending Surgeon With Variation in the Receipt of Genetic Testing After Diagnosis of Breast Cancer [J].
Katz, Steven J. ;
Bondarenko, Irina ;
Ward, Kevin C. ;
Hamilton, Ann S. ;
Morrow, Monica ;
Kurian, AllisonW. ;
Hofer, Timothy P. .
JAMA SURGERY, 2018, 153 (10) :909-916
[10]   Oncologists' influence on receipt of adjuvant chemotherapy: does it matter whom you see for treatment of curable breast cancer? [J].
Katz, Steven J. ;
Hawley, Sarah T. ;
Bondarenko, Irina ;
Jagsi, Reshma ;
Ward, Kevin C. ;
Hofer, Timothy P. ;
Kurian, Allison W. .
BREAST CANCER RESEARCH AND TREATMENT, 2017, 165 (03) :751-756