Extremal (n,n+1)-graphs with respected to zeroth- order general Randic index

被引:26
作者
Chen, Shubo [1 ]
Deng, Hanyuan [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
(n; n+1)-graph; zeroth-order general Randic index; degree sequence;
D O I
10.1007/s10910-006-9131-8
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A ( n, n + 1)-graph G is a connected simple graph with n vertices and n + 1 edges. If d(upsilon) denotes the degree of the vertex v, then the zeroth-order general Randic index R-alpha(0)( G) of the graph G is defined as Sigma nu is an element of V( G) d(upsilon)(alpha), where a is a real number. We characterize, for any a, the ( n, n + 1)-graphs with the smallest and greatest zeroth-order general Randic index.
引用
收藏
页码:555 / 564
页数:10
相关论文
共 17 条
[1]  
Bollobás B, 1998, ARS COMBINATORIA, V50, P225
[2]  
Hu YM, 2005, MATCH-COMMUN MATH CO, V54, P425
[3]  
Hu YM, 2004, MATCH-COMMUN MATH CO, P129
[4]  
Hu YM, 2004, MATCH-COMMUN MATH CO, P119
[5]  
HUA H, IN PRESS J MATH CHEM
[6]  
Kier L. H., 1976, Molecular Connectivity in Chemistry and Drug Research
[7]  
KIER LB, 1977, EUR J MED CHEM, V12, P307
[8]  
KIER LB, 1986, MOL CONNECTIVITY CHE
[9]  
[郎荣玲 Lang Rongling], 2003, [高校应用数学学报. A辑, Applied Mathematics a Journal of Chinese Universities], V18, P487
[10]  
Li XL, 2005, MATCH-COMMUN MATH CO, V54, P195