Resolving heterogeneity in schizophrenia through a novel systems approach to brain structure: individualized structural covariance network analysis

被引:95
作者
Liu, Zhaowen [1 ,2 ,3 ]
Palaniyappan, Lena [4 ,5 ,6 ]
Wu, Xinran [7 ,8 ]
Zhang, Kai [9 ]
Du, Jiangnan [7 ,8 ]
Zhao, Qi [7 ,8 ]
Xie, Chao [7 ,8 ]
Tang, Yingying [10 ]
Su, Wenjun [10 ]
Wei, Yarui [11 ,12 ,13 ,14 ,15 ,16 ,17 ]
Xue, Kangkang [11 ,12 ,13 ,14 ,15 ,16 ,17 ]
Han, Shaoqiang [11 ,12 ,13 ,14 ,15 ,16 ,17 ]
Tsai, Shih-Jen [18 ,19 ]
Lin, Ching-Po [8 ,20 ,21 ]
Cheng, Jingliang [11 ,12 ,13 ,14 ,15 ,16 ,17 ]
Li, Chunbo [10 ]
Wang, Jijun [10 ,22 ,23 ]
Sahakian, Barbara J. [7 ,24 ]
Robbins, Trevor W. [7 ,25 ]
Zhang, Jie [7 ,8 ]
Feng, Jianfeng [7 ,8 ,26 ,27 ,28 ,29 ]
机构
[1] Massachusetts Gen Hosp, Ctr Genom Med, Psychiat & Neurodev Genet Unit, Boston, MA 02114 USA
[2] Harvard Med Sch, Massachusetts Gen Hosp, Dept Psychiat, Boston, MA 02115 USA
[3] Broad Inst MIT & Harvard, Stanley Ctr Psychiat Res, Cambridge, MA 02142 USA
[4] Univ Western Ontario, Dept Psychiat, London, ON, Canada
[5] Univ Western Ontario, Robarts Res Inst, London, ON, Canada
[6] Lawson Hlth Res Inst, London, ON, Canada
[7] Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai, Peoples R China
[8] Fudan Univ, Key Lab Computat Neurosci & Brain Inspired Intell, Minist Educ, Shanghai, Peoples R China
[9] East China Normal Univ, Sch Comp Sci & Technol, Shanghai, Peoples R China
[10] Shanghai Jiao Tong Univ, Shanghai Mental Hlth Ctr, Shanghai Key Lab Psychot Disorders, Sch Med, Shanghai, Peoples R China
[11] Zhengzhou Univ, Affiliated Hosp 1, Dept Magnet Resonance Imaging, Zhengzhou, Peoples R China
[12] Key Lab Funct Magnet Resonance Imaging & Mol Imag, Zhengzhou, Peoples R China
[13] Engn Technol Res Ctr Detect & Applicat Brain Func, Zhengzhou, Peoples R China
[14] Engn Res Ctr Med Imaging Intelligent Diag & Treat, Zhengzhou, Peoples R China
[15] Key Lab Magnet Resonance & Brain Funct Henan Prov, Zhengzhou, Peoples R China
[16] Key Lab Imaging Intelligence Res Med Henan Prov, Zhengzhou, Peoples R China
[17] Key Lab Brain Funct & Cognit Magnet Resonance Ima, Zhengzhou, Peoples R China
[18] Natl Yang Ming Chiao Tung Univ, Inst Brain Sci, Taipei, Taiwan
[19] Taipei Vet Gen Hosp, Dept Psychiat, Taipei, Taiwan
[20] Natl Yang Ming Chiao Tung Univ, Brain Res Ctr, Taipei, Taiwan
[21] Natl Yang Ming Chiao Tung Univ, Inst Neurosci, Taipei, Taiwan
[22] Chinese Acad Sci, CAS Ctr Excellence Brain Sci & Intelligence Techn, Shanghai, Peoples R China
[23] Shanghai Jiao Tong Univ, Inst Psychol & Behav Sci, Shanghai, Peoples R China
[24] Univ Cambridge, Sch Clin Med, Dept Psychiat, Cambridge, England
[25] Univ Cambridge, Dept Psychol, Behav & Clin Neurosci Inst, Cambridge, England
[26] Shanghai Ctr Math Sci, Shanghai, Peoples R China
[27] Univ Warwick, Dept Comp Sci, Coventry, W Midlands, England
[28] Fudan Univ, Collaborat Innovat Ctr Brain Sci, Shanghai, Peoples R China
[29] Zhejiang Normal Univ, Fudan ISTBI ZJNU Algorithm Ctr Brain Inspired Int, Jinhua, Zhejiang, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
OBSESSIVE-COMPULSIVE-DISORDER; CORTICAL THICKNESS; SCHIZOAFFECTIVE DISORDER; HIPPOCAMPAL VOLUME; SCALE; INTERCORRELATIONS; DISTURBANCES; PARCELLATION; ARCHITECTURE; DEPRESSION;
D O I
10.1038/s41380-021-01229-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Reliable mapping of system-level individual differences is a critical first step toward precision medicine for complex disorders such as schizophrenia. Disrupted structural covariance indicates a system-level brain maturational disruption in schizophrenia. However, most studies examine structural covariance at the group level. This prevents subject-level inferences. Here, we introduce a Network Template Perturbation approach to construct individual differential structural covariance network (IDSCN) using regional gray-matter volume. IDSCN quantifies how structural covariance between two nodes in a patient deviates from the normative covariance in healthy subjects. We analyzed T1 images from 1287 subjects, including 107 first-episode (drug-naive) patients and 71 controls in the discovery datasets and established robustness in 213 first-episode (drug-naive), 294 chronic, 99 clinical high-risk patients, and 494 controls from the replication datasets. Patients with schizophrenia were highly variable in their altered structural covariance edges; the number of altered edges was related to severity of hallucinations. Despite this variability, a subset of covariance edges, including the left hippocampus-bilateral putamen/globus pallidus edges, clustered patients into two distinct subgroups with opposing changes in covariance compared to controls, and significant differences in their anxiety and depression scores. These subgroup differences were stable across all seven datasets with meaningful genetic associations and functional annotation for the affected edges. We conclude that the underlying physiology of affective symptoms in schizophrenia involves the hippocampus and putamen/pallidum, predates disease onset, and is sufficiently consistent to resolve morphological heterogeneity throughout the illness course. The two schizophrenia subgroups identified thus have implications for the nosology and clinical treatment.
引用
收藏
页码:7719 / 7731
页数:13
相关论文
共 70 条
[1]  
Ajnakina O, SCHIZOPHRENIA BULL, V2021
[2]   Imaging structural co-variance between human brain regions [J].
Alexander-Bloch, Aaron ;
Giedd, Jay N. ;
Bullmore, Edward T. .
NATURE REVIEWS NEUROSCIENCE, 2013, 14 (05) :322-336
[3]  
Andreasen N C, 1990, Mod Probl Pharmacopsychiatry, V24, P73
[4]  
Antoniades M, SCHIZOPHRENIA BULL, V2021
[5]   The relationship between brain structure and neurocognition in schizophrenia: a selective review [J].
Antonova, E ;
Sharma, T ;
Morris, R ;
Kumari, V .
SCHIZOPHRENIA RESEARCH, 2004, 70 (2-3) :117-145
[6]   Hippocampal Volume Is Reduced in Schizophrenia and Schizoaffective Disorder But Not in Psychotic Bipolar I Disorder Demonstrated by Both Manual Tracing and Automated Parcellation (FreeSurfer) [J].
Arnold, Sara J. M. ;
Ivleva, Elena I. ;
Gopal, Tejas A. ;
Reddy, Anil P. ;
Jeon-Slaughter, Haekyung ;
Sacco, Carolyn B. ;
Francis, Alan N. ;
Tandon, Neeraj ;
Bidesi, Anup S. ;
Witte, Bradley ;
Poudyal, Gaurav ;
Pearlson, Godfrey D. ;
Sweeney, John A. ;
Clementz, Brett A. ;
Keshavan, Matcheri S. ;
Tamminga, Carol A. .
SCHIZOPHRENIA BULLETIN, 2015, 41 (01) :233-249
[7]   A fast diffeomorphic image registration algorithm [J].
Ashburner, John .
NEUROIMAGE, 2007, 38 (01) :95-113
[8]   Self-disturbances as a possible premorbid indicator of schizophrenia risk: A neurodevelopmental perspective [J].
Brent, Benjamin K. ;
Seidman, Larry J. ;
Thermenos, Heidi W. ;
Holt, Daphne J. ;
Keshavan, Matcheri S. .
SCHIZOPHRENIA RESEARCH, 2014, 152 (01) :73-80
[9]   Heterogeneity and Homogeneity of Regional Brain Structure in Schizophrenia A Meta-analysis [J].
Brugger, Stefan P. ;
Howes, Oliver D. .
JAMA PSYCHIATRY, 2017, 74 (11) :1104-1111
[10]   Rethinking schizophrenia in the context of normal neurodevelopment [J].
Catts, Vibeke S. ;
Fung, Samantha J. ;
Long, Leonora E. ;
Joshi, Dipesh ;
Vercammen, Ans ;
Allen, Katherine M. ;
Fillman, Stu G. ;
Rothmond, Debora A. ;
Sinclair, Duncan ;
Tiwari, Yash ;
Tsai, Shan-Yuan ;
Weickert, Thomas W. ;
Weickert, Cynthia Shannon .
FRONTIERS IN CELLULAR NEUROSCIENCE, 2013, 7