Topological entropy of fuzzified dynamical systems

被引:25
作者
Canovas, J. S. [2 ]
Kupka, J. [1 ]
机构
[1] Univ Ostrava, Inst Res & Applicat Fuzzy Modeling, Ostrava 70133 1, Czech Republic
[2] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena 30202, Spain
关键词
Fuzzy dynamical system; Set-valued dynamical system; Fuzzification; Zadeh's extension; Levelwise metric; Endograph metric; Sendograph metric; Topological entropy; Shift map; FUZZY-SETS; EXTENSION PRINCIPLE; MAPS; CHAOS;
D O I
10.1016/j.fss.2010.10.020
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A discrete dynamical system is given by a compact metric space X and any continuous self-map defined on X. This discrete dynamical system can be naturally extended to the space of fuzzy sets on X. In this paper we study relations between the sizes of the topological entropies cif the original dynamical system and of its fuzzy counterpart. Among other things, we present a constructive proof of the fact that oven very weak assumptions on the crisp discrete dynamical system ensure infinite topological entropy of the fuzzy system. However, we also show that there are subsystems of the fuzzy dynamical system with topological entropy equal to that of the crisp dynamical system. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 49
页数:13
相关论文
共 19 条
[1]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[2]  
Alseda L., 1993, COMBINATORIAL DYNAMI
[3]   Entropy and periodic points for transitive maps [J].
Alseda, LL ;
Kolyada, S ;
Llibre, J ;
Snoha, L .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (04) :1551-1573
[4]  
[Anonymous], TOPOLOGY
[5]  
Blanchard F, 2002, J REINE ANGEW MATH, V547, P51
[7]  
CANOVAS J, 2006, CHAOS SOLITON FRACT, V28, P979
[8]   Topological entropy of maps on the real line [J].
Cánovas, JS ;
Rodríguez, JM .
TOPOLOGY AND ITS APPLICATIONS, 2005, 153 (5-6) :735-746
[9]  
DEBARROS LC, P IFSA 97 C PRAG
[10]   CHAOS, ENTROPY AND A GENERALIZED EXTENSION PRINCIPLE [J].
DIAMOND, P ;
POKROVSKII, A .
FUZZY SETS AND SYSTEMS, 1994, 61 (03) :277-283