Cluster synchronization modes in an ensemble of coupled chaotic oscillators

被引:146
作者
Belykh, VN
Belykh, IV
Mosekilde, E
机构
[1] Nizhny Novgorod Univ, Adv Sch Phys, Nizhnii Novgorod 603600, Russia
[2] Inst Appl Math & Cybernet, Nizhnii Novgorod 603005, Russia
[3] Tech Univ Denmark, Dept Phys, DK-2800 Kings Lyngby, Denmark
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 03期
关键词
D O I
10.1103/PhysRevE.63.036216
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Considering systems of diffusively coupled identical chaotic oscillators, an effective method to determine the possible states of cluster synchronization and ensure their stability is presented. The method, which may find applications in communication engineering and other fields of science and technology, is illustrated through concrete examples of coupled biological cell models.
引用
收藏
页码:362161 / 362164
页数:4
相关论文
共 22 条
[1]  
AFRAIMOVICH VS, 1986, IZV VUZ KHIM KH TEKH, V29, P795, DOI DOI 10.1007/BF01034476
[2]   Invariant manifolds and cluster synchronization in a family of locally coupled map lattices [J].
Belykh, V ;
Belykh, I ;
Komrakov, N ;
Mosekilde, E .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2000, 4 (03) :245-256
[3]  
BELYKH VN, IN PRESS PHYS REV E
[4]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[5]   Synchronization of oscillators with random nonlocal connectivity [J].
Gade, PM .
PHYSICAL REVIEW E, 1996, 54 (01) :64-70
[6]   SHORT-WAVELENGTH BIFURCATIONS AND SIZE INSTABILITIES IN COUPLED OSCILLATOR-SYSTEMS [J].
HEAGY, JF ;
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW LETTERS, 1995, 74 (21) :4185-4188
[7]   SYNCHRONOUS CHAOS IN COUPLED OSCILLATOR-SYSTEMS [J].
HEAGY, JF ;
CARROLL, TL ;
PECORA, LM .
PHYSICAL REVIEW E, 1994, 50 (03) :1874-1885
[8]   RELEVANCE OF DYNAMIC CLUSTERING TO BIOLOGICAL NETWORKS [J].
KANEKO, K .
PHYSICA D, 1994, 75 (1-3) :55-73
[9]   CLUSTERING, CODING, SWITCHING, HIERARCHICAL ORDERING, AND CONTROL IN A NETWORK OF CHAOTIC ELEMENTS [J].
KANEKO, K .
PHYSICA D, 1990, 41 (02) :137-172
[10]   MEAN FIELD FLUCTUATION OF A NETWORK OF CHAOTIC ELEMENTS - REMAINING FLUCTUATION AND CORRELATION IN THE LARGE SIZE LIMIT [J].
KANEKO, K .
PHYSICA D, 1992, 55 (3-4) :368-384