Interactive Contrastive Learning for Self-Supervised Entity Alignment

被引:17
|
作者
Zeng, Kaisheng [1 ]
Dong, Zhenhao [2 ]
Hou, Lei [3 ]
Cao, Yixin [4 ]
Hu, Minghao [5 ]
Yu, Jifan [1 ]
Lv, Xin [1 ]
Cao, Lei [1 ]
Wang, Xin [1 ]
Liu, Haozhuang [1 ]
Huang, Yi [6 ]
Feng, Junlan [6 ]
Wan, Jing [2 ]
Li, Juanzi [7 ]
Feng, Ling [7 ]
机构
[1] Tsinghua Univ, Beijing, Peoples R China
[2] Beijing Univ Chem Technol, Beijing, Peoples R China
[3] Tsinghua, BNRist, Dept Comp Sci & Technol, Beijing, Peoples R China
[4] Singapore Management Univ, Singapore, Singapore
[5] Informat Res Ctr Mil Sci, Beijing, Peoples R China
[6] China Mobile Res Inst, Beijing, Peoples R China
[7] Tsinghua Univ, BNRist, CST, Beijing, Peoples R China
来源
PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022 | 2022年
关键词
Knowledge Graph; Entity Alignment; Self-Supervised Learning; Contrastive Learning;
D O I
10.1145/3511808.3557364
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Self-supervised entity alignment (EA) aims to link equivalent entities across different knowledge graphs (KGs) without the use of pre-aligned entity pairs. The current state-of-the-art (SOTA) self-supervised EA approach draws inspiration from contrastive learning, originally designed in computer vision based on instance discrimination and contrastive loss, and suffers from two shortcomings. Firstly, it puts unidirectional emphasis on pushing sampled negative entities far away rather than pulling positively aligned pairs close, as is done in the well-established supervised EA. Secondly, it advocates the minimum information requirement for self-supervised EA, while we argue that self-described KG's side information (e.g., entity name, relation name, entity description) shall preferably be explored to the maximum extent for the self-supervised EA task. In this work, we propose an interactive contrastive learning model for self-supervised EA. It conducts bidirectional contrastive learning via building pseudo-aligned entity pairs as pivots to achieve direct cross-KG information interaction. It further exploits the integration of entity textual and structural information and elaborately designs encoders for better utilization in the self-supervised setting. Experimental results show that our approach outperforms the previous best self-supervised method by a large margin (over 9% Hits@1 absolute improvement on average) and performs on par with previous SOTA supervised counterparts, demonstrating the effectiveness of the interactive contrastive learning for self-supervised EA. The code and data are available at https://github.com/THU-KEG/ICLEA.
引用
收藏
页码:2465 / 2475
页数:11
相关论文
共 50 条
  • [21] JGCL: Joint Self-Supervised and Supervised Graph Contrastive Learning
    Akkas, Selahattin
    Azad, Ariful
    COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2022, WWW 2022 COMPANION, 2022, : 1099 - 1105
  • [22] Contrastive Self-supervised Representation Learning Using Synthetic Data
    She, Dong-Yu
    Xu, Kun
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2021, 18 (04) : 556 - 567
  • [23] Image classification framework based on contrastive self-supervised learning
    Zhao H.-W.
    Zhang J.-R.
    Zhu J.-P.
    Li H.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (08): : 1850 - 1856
  • [24] PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling
    Zhou, Yujia
    Dou, Zhicheng
    Zhu, Yutao
    Wen, Ji-Rong
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 2749 - 2758
  • [25] Contrastive Self-Supervised Learning as a Strong Baseline for Unsupervised Hashing
    Yang, Huei-Fang
    2022 IEEE 24TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2022,
  • [26] Contrastive Self-Supervised Learning With Smoothed Representation for Remote Sensing
    Jung, Heechul
    Oh, Yoonju
    Jeong, Seongho
    Lee, Chaehyeon
    Jeon, Taegyun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [27] Toward Graph Self-Supervised Learning With Contrastive Adjusted Zooming
    Zheng, Yizhen
    Li, Ming
    Pan, Shirui
    Li, Yuan-Fang
    Peng, Hao
    Li, Ming
    Li, Zhao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (07) : 8882 - 8896
  • [28] Contrastive Self-supervised Representation Learning Using Synthetic Data
    Dong-Yu She
    Kun Xu
    International Journal of Automation and Computing, 2021, 18 : 556 - 567
  • [29] Contrastive Self-supervised Representation Learning Using Synthetic Data
    Dong-Yu She
    Kun Xu
    International Journal of Automation and Computing , 2021, (04) : 556 - 567
  • [30] SELF-SUPERVISED ACOUSTIC ANOMALY DETECTION VIA CONTRASTIVE LEARNING
    Hojjati, Hadi
    Armanfard, Narges
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3253 - 3257