Improvement of electrochemical performances of ultrathin Ti-coated Si-based multilayer nanofibers as anode materials for lithium-ion batteries

被引:10
作者
Qiao, Li [1 ]
Yang, Zhibo [2 ]
Li, Xiuwan [2 ]
He, Deyan [2 ]
机构
[1] Qinghai Univ, Dept Basic Res, Xining 810016, Peoples R China
[2] Lanzhou Univ, Sch Phys Sci & Technol, Key Lab Magnetism & Magnet Mat, Minist Educ, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Silicon anode materials; Electrospinning; Nanofibers; Ti-coated; lithium ion batteries; Multilayered structure; THIN-FILM; SILICON; COMPOSITE; STORAGE; NANOMEMBRANES; FABRICATION; LITHIATION; NANOTUBES; CAPACITY; NETWORK;
D O I
10.1016/j.surfcoat.2021.127669
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Fullerene-like carbon core/silicon shell (FLC/Si) nanofibers are prepared via an electrospinning method followed by plasma-enhanced chemical vapor deposition technology. Then, a thin metal Ti layer is coated by electron beam physical vapor deposition. The multilayer FLC/Si/Ti electrode exhibits remarkably improved electrochemical properties as a lithium-ion battery anode compared to the uncoated anode, i.e., a higher initial Coulombic efficiency, more stable cycle performance, higher capacity and excellent rate capability (capacity over 1000 mA h g(-1) at 3200 mA g(-1)). These improved electrochemical performances of the multilayer FLC/Si/Ti electrode can be attributed to the presence of a Ti layer on the surface of the electrode.
引用
收藏
页数:6
相关论文
共 48 条
[1]   A Copper Silicide Nanofoam Current Collector for Directly Grown Si Nanowire Networks and their Application as Lithium-Ion Anodes [J].
Aminu, Ibrahim Saana ;
Geaney, Hugh ;
Imtiaz, Sumair ;
Adegoke, Temilade E. ;
Kapuria, Nilotpal ;
Collins, Gearoid A. ;
Ryan, Kevin M. .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (38)
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries [J].
Chen, L. B. ;
Xie, J. Y. ;
Yu, H. C. ;
Wang, T. H. .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2009, 39 (08) :1157-1162
[4]   Green Fabrication of Silkworm Cocoon-like Silicon-Based Composite for High-Performance Li-Ion Batteries [J].
Du, Fei-Hu ;
Ni, Yizhou ;
Wang, Ye ;
Wang, Dong ;
Ge, Qi ;
Chen, Shuo ;
Yang, Hui Ying .
ACS NANO, 2017, 11 (09) :8628-8635
[5]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[6]   Confronting the Challenges of Next-Generation Silicon Anode-Based Lithium-Ion Batteries: Role of Designer Electrolyte Additives and Polymeric Binders [J].
Eshetu, Gebrekidan Gebresilassie ;
Figgemeier, Egbert .
CHEMSUSCHEM, 2019, 12 (12) :2515-2539
[7]   Design, synthesis and lithium-ion storage capability of Al0.5Nb24.5O62 [J].
Fu, Qingfeng ;
Li, Renjie ;
Zhu, Xiangzhen ;
Liang, Guisheng ;
Luo, Lijie ;
Chen, Yongjun ;
Lin, Chunfu ;
Zhao, X. S. .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (34) :19862-19871
[8]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[9]   Ti/Si/Ti sandwich-like thin film as the anode of lithium-ion batteries [J].
Guo, Shuang ;
Li, Haixia ;
Bai, Hongmei ;
Tao, Zhanliang ;
Chen, Jun .
JOURNAL OF POWER SOURCES, 2014, 248 :1141-1148
[10]   Highly Stabilized Silicon Nanoparticles for Lithium Storage via Hierarchical Carbon Architecture [J].
Jin, Dun ;
Saravanakumar, Balasubramaniam ;
Ou, Yuqing ;
Li, Guanjie ;
Zhang, Wenguang ;
Wang, Huirong ;
Yang, Xianfeng ;
Qiu, Yongcai ;
Wu, Yuping ;
Li, Weishan .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (05) :4777-4786