Multiparameter discrete transforms based on discrete orthogonal polynomials and their application to image watermarking

被引:2
|
作者
Annaby, M. H. [1 ]
Ayad, H. A. [1 ]
Prestin, Juergen [2 ]
Rushdi, Muhammad A. [3 ]
机构
[1] Cairo Univ, Fac Sci, Dept Math, Giza 12613, Egypt
[2] Univ Lubeck, Inst Math, Ratzeburger Allee 160, D-23562 Lubeck, Germany
[3] Cairo Univ, Fac Engn, Dept Biomed Engn & Syst, Giza 12613, Egypt
关键词
Discrete orthogonal polynomials; Multiparameter discrete Krawtchouk transform; Multiparameter discrete Chebyshev transform; Multiparameter discrete Charlier transform; Fast computations; Blind image watermarking; COMPUTATION; MOMENTS; RECONSTRUCTION; RECOGNITION;
D O I
10.1016/j.image.2021.116434
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Applications of discrete orthogonal polynomials (DOPs) in image processing have been recently emerging. In particular, Krawtchouk, Chebyshev, and Charlier DOPs have been applied as bases for image analysis in the frequency domain. However, fast realizations and fractional-type generalizations of DOP-based discrete transforms have been rarely addressed. In this paper, we introduce families of multiparameter discrete fractional transforms via orthogonal spectral decomposition based on Krawtchouk, Chebyshev, and Charlier DOPs. The eigenvalues are chosen arbitrarily in both unitary and non-unitary settings. All families of transforms, for varieties of eigenvalues, are applied in image watermarking. We also exploit recently introduced fast techniques to reduce complexity for the Krawtchouk case. Experimental results show the robustness of the proposed transforms against watermarking attacks.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Pearson equations for discrete orthogonal polynomials: III—Christoffel and Geronimus transformations
    Manuel Mañas
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [23] On discrete orthogonal U-Bernoulli Korobov-type polynomials
    Ramirez, William
    Alejandro, Urieles
    Cesarano, Clemente
    CONSTRUCTIVE MATHEMATICAL ANALYSIS, 2024, 7 : 1 - 10
  • [24] Laguerre-Freud Equations for the Gauss Hypergeometric Discrete Orthogonal Polynomials
    Fernandez-Irisarri, Itsaso
    Manas, Manuel
    MATHEMATICS, 2023, 11 (23)
  • [25] A New Class of Discrete Orthogonal Polynomials for Blind Fitting of Finite Data
    Gamboa-Rosales, Hamurabi
    Morales-Mendoza, Luis J.
    Shmaliy, Yuriy S.
    2013 10TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE), 2013, : 185 - 190
  • [26] Fractional discrete Tchebyshev moments and their applications in image encryption and watermarking
    Xiao, Bin
    Luo, Jiangxia
    Bi, Xiuli
    Li, Weisheng
    Chen, Beijing
    INFORMATION SCIENCES, 2020, 516 : 545 - 559
  • [27] A new set of image encryption algorithms based on discrete orthogonal moments and Chaos theory
    Kamrani, Abdelhalim
    Zenkouar, Khalid
    Najah, Said
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (27-28) : 20263 - 20279
  • [28] Pearson equations for discrete orthogonal polynomials: III-Christoffel and Geronimus transformations
    Manas, Manuel
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (04)
  • [29] Laguerre-Freud equations for three families of hypergeometric discrete orthogonal polynomials
    Fernandez-Irisarri, Itsaso
    Manas, Manuel
    STUDIES IN APPLIED MATHEMATICS, 2023, 151 (02) : 509 - 535
  • [30] Nonintersecting Brownian Motions on the Half-Line and Discrete Gaussian Orthogonal Polynomials
    Karl Liechty
    Journal of Statistical Physics, 2012, 147 : 582 - 622