Multiparameter discrete transforms based on discrete orthogonal polynomials and their application to image watermarking

被引:2
作者
Annaby, M. H. [1 ]
Ayad, H. A. [1 ]
Prestin, Juergen [2 ]
Rushdi, Muhammad A. [3 ]
机构
[1] Cairo Univ, Fac Sci, Dept Math, Giza 12613, Egypt
[2] Univ Lubeck, Inst Math, Ratzeburger Allee 160, D-23562 Lubeck, Germany
[3] Cairo Univ, Fac Engn, Dept Biomed Engn & Syst, Giza 12613, Egypt
关键词
Discrete orthogonal polynomials; Multiparameter discrete Krawtchouk transform; Multiparameter discrete Chebyshev transform; Multiparameter discrete Charlier transform; Fast computations; Blind image watermarking; COMPUTATION; MOMENTS; RECONSTRUCTION; RECOGNITION;
D O I
10.1016/j.image.2021.116434
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Applications of discrete orthogonal polynomials (DOPs) in image processing have been recently emerging. In particular, Krawtchouk, Chebyshev, and Charlier DOPs have been applied as bases for image analysis in the frequency domain. However, fast realizations and fractional-type generalizations of DOP-based discrete transforms have been rarely addressed. In this paper, we introduce families of multiparameter discrete fractional transforms via orthogonal spectral decomposition based on Krawtchouk, Chebyshev, and Charlier DOPs. The eigenvalues are chosen arbitrarily in both unitary and non-unitary settings. All families of transforms, for varieties of eigenvalues, are applied in image watermarking. We also exploit recently introduced fast techniques to reduce complexity for the Krawtchouk case. Experimental results show the robustness of the proposed transforms against watermarking attacks.
引用
收藏
页数:16
相关论文
共 37 条
[1]   Fast Recursive Computation of Krawtchouk Polynomials [J].
Abdulhussain, Sadiq H. ;
Ramli, Abd Rahman ;
Al-Haddad, Syed Abdul Rahman ;
Mahmmod, Basheera M. ;
Jassim, Wissam A. .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2018, 60 (03) :285-303
[2]   Difference operators and generalized discrete fractional transforms in signal and image processing [J].
Annaby, M. H. ;
Ayad, H. A. ;
Rushdi, M. A. ;
Nehary, E. A. .
SIGNAL PROCESSING, 2018, 151 :1-18
[3]   New discrete orthogonal moments for signal analysis [J].
Asli, Barmak Honarvar Shakibaei ;
Flusser, Jan .
SIGNAL PROCESSING, 2017, 141 :57-73
[4]   Fast computation of Krawtchouk moments [J].
Asli, Barmak Honarvar Shakibaei ;
Flusser, Jan .
INFORMATION SCIENCES, 2014, 288 :73-86
[5]  
Baik J., 2007, DISCR ORTH POLYN AM
[6]  
Chihara T.S., 2011, An Introduction to Orthogonal Polynomials
[7]   Automatic Target Recognition of Military Vehicles With Krawtchouk Moments [J].
Clemente, Carmine ;
Pallotta, Luca ;
Gaglione, Domenico ;
De Maio, Antonio ;
Soraghan, John J. .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2017, 53 (01) :493-500
[8]   Biomedical signals reconstruction and zero-watermarking using separable fractional order Charlier-Krawtchouk transformation and Sine Cosine Algorithm [J].
Daoui, Achraf ;
Yamni, Mohamed ;
Karmouni, Hicham ;
Sayyouri, Mhamed ;
Qjidaa, Hassan .
SIGNAL PROCESSING, 2021, 180 (180)
[9]  
Furht B., 2006, MULTIMEDIA ENCRYPTIO, V28
[10]   Image reconstruction from a complete set of similarity invariants extracted from complex moments [J].
Ghorbel, F. ;
Derrode, S. ;
Mezhoud, R. ;
Bannour, T. ;
Dhahbi, S. .
PATTERN RECOGNITION LETTERS, 2006, 27 (12) :1361-1369