Hierarchical multi-swarm cooperative teaching-learning-based optimization for global optimization

被引:17
作者
Zou, Feng [1 ]
Chen, Debao [1 ]
Lu, Renquan [2 ]
Wang, Peng [1 ]
机构
[1] HuaiBei Normal Univ, Sch Phys & Elect Informat, Huaibei 235000, Peoples R China
[2] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Hierarchical multi-swarm cooperation; Teaching-learning-based optimization; Gaussian sampling learning; Regrouping; Latin hypercube sampling; POWER DISPATCH PROBLEM; DIFFERENTIAL EVOLUTION; ALGORITHM; LOCATION; DESIGN;
D O I
10.1007/s00500-016-2237-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hierarchical cooperation mechanism, which is inspired by the features of specialization and cooperation in the social organizations, has been successfully used to increase the diversity of the population and avoid premature convergence for solving complex optimization problems. In this paper, a new two-level hierarchical multi-swarm cooperative TLBO variant called HMCTLBO is presented to solve global optimization problems. In the proposed HMCTLBO algorithm, all learners are randomly divided into several sub-swarms with equal amounts of learners at the bottom level of the hierarchy. The learners of each swarm evolve only in their corresponding swarm in parallel independently to maintain the diversity and improve the exploration capability of the population. Moreover, all the best learners from each swarm compose the new swarm at the top level of the hierarchy, and each learner of the swarm evolves according to Gaussian sampling learning. Furthermore, a randomized regrouping strategy is performed, and a subspace searching strategy based on Latin hypercube sampling is introduced to maintain the diversity of the population. To verify the performance of the proposed approaches, 48 benchmark test functions are evaluated. Conducted experiments indicate that the proposed HMCTLBO algorithm is competitive to some existing TLBO variants and other optimization algorithms.
引用
收藏
页码:6983 / 7004
页数:22
相关论文
共 50 条
  • [21] Comments on "A note on teaching-learning-based optimization algorithm"
    Waghmare, Gajanan
    INFORMATION SCIENCES, 2013, 229 : 159 - 169
  • [22] Dynamic opposite learning enhanced teaching-learning-based optimization
    Xu, Yunlang
    Yang, Zhile
    Li, Xiaoping
    Kang, Huazhou
    Yang, Xiaofeng
    KNOWLEDGE-BASED SYSTEMS, 2020, 188
  • [23] Teaching-learning-based optimization with a fuzzy grouping learning strategy for global numerical optimization
    Zhai, Zhibo
    Li, Shujuan
    Liu, Yong
    Li, Zhanlong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 29 (06) : 2345 - 2356
  • [24] Closed-Loop Teaching-Learning-Based Optimization Algorithm for Global Optimization
    Zheng, Shuaiyin
    Ren, Ziwu
    PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 2120 - 2125
  • [25] Multi-opposition Teaching-Learning-based Optimization
    He J.
    Peng Z.
    Cui D.
    Li Q.
    Gongcheng Kexue Yu Jishu/Advanced Engineering Sciences, 2019, 51 (06): : 159 - 167
  • [26] Constrained optimization based on improved teaching-learning-based optimization algorithm
    Yu, Kunjie
    Wang, Xin
    Wang, Zhenlei
    INFORMATION SCIENCES, 2016, 352 : 61 - 78
  • [27] Quadratic interpolation based teaching-learning-based optimization for chemical dynamic system optimization
    Chen, Xu
    Mei, Congli
    Xu, Bin
    Yu, Kunjie
    Huang, Xiuhui
    KNOWLEDGE-BASED SYSTEMS, 2018, 145 : 250 - 263
  • [28] Modified Teaching-Learning-Based Optimization algorithm for global numerical optimization-A comparative study
    Satapathy, Suresh Chandra
    Naik, Anima
    SWARM AND EVOLUTIONARY COMPUTATION, 2014, 16 : 28 - 37
  • [29] A note on teaching-learning-based optimization algorithm
    Crepinsek, Matej
    Liu, Shih-Hsi
    Mernik, Luka
    INFORMATION SCIENCES, 2012, 212 : 79 - 93
  • [30] Teaching-learning-based optimization with differential and repulsion learning for global optimization and nonlinear modeling
    Zou, Feng
    Chen, Debao
    Lu, Renquan
    Li, Suwen
    Wu, Lehui
    SOFT COMPUTING, 2018, 22 (21) : 7177 - 7205