Hierarchical multi-swarm cooperative teaching-learning-based optimization for global optimization

被引:17
作者
Zou, Feng [1 ]
Chen, Debao [1 ]
Lu, Renquan [2 ]
Wang, Peng [1 ]
机构
[1] HuaiBei Normal Univ, Sch Phys & Elect Informat, Huaibei 235000, Peoples R China
[2] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Hierarchical multi-swarm cooperation; Teaching-learning-based optimization; Gaussian sampling learning; Regrouping; Latin hypercube sampling; POWER DISPATCH PROBLEM; DIFFERENTIAL EVOLUTION; ALGORITHM; LOCATION; DESIGN;
D O I
10.1007/s00500-016-2237-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hierarchical cooperation mechanism, which is inspired by the features of specialization and cooperation in the social organizations, has been successfully used to increase the diversity of the population and avoid premature convergence for solving complex optimization problems. In this paper, a new two-level hierarchical multi-swarm cooperative TLBO variant called HMCTLBO is presented to solve global optimization problems. In the proposed HMCTLBO algorithm, all learners are randomly divided into several sub-swarms with equal amounts of learners at the bottom level of the hierarchy. The learners of each swarm evolve only in their corresponding swarm in parallel independently to maintain the diversity and improve the exploration capability of the population. Moreover, all the best learners from each swarm compose the new swarm at the top level of the hierarchy, and each learner of the swarm evolves according to Gaussian sampling learning. Furthermore, a randomized regrouping strategy is performed, and a subspace searching strategy based on Latin hypercube sampling is introduced to maintain the diversity of the population. To verify the performance of the proposed approaches, 48 benchmark test functions are evaluated. Conducted experiments indicate that the proposed HMCTLBO algorithm is competitive to some existing TLBO variants and other optimization algorithms.
引用
收藏
页码:6983 / 7004
页数:22
相关论文
共 50 条
  • [1] Hierarchical multi-swarm cooperative teaching–learning-based optimization for global optimization
    Feng Zou
    Debao Chen
    Renquan Lu
    Peng Wang
    Soft Computing, 2017, 21 : 6983 - 7004
  • [2] An ensemble multi-swarm teaching-learning-based optimization algorithm for function optimization and image segmentation
    Jiang, Ziqi
    Zou, Feng
    Chen, Debao
    Cao, Siyu
    Liu, Hui
    Guo, Wei
    APPLIED SOFT COMPUTING, 2022, 130
  • [3] An Experience Information Teaching-Learning-Based Optimization for Global Optimization
    Wang, Zhuo
    Lu, Renquan
    Chen, Debao
    Zou, Feng
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2016, 46 (09): : 1202 - 1214
  • [4] Teaching-learning-based optimization with dynamic group strategy for global optimization
    Zou, Feng
    Wang, Lei
    Hei, Xinhong
    Chen, Debao
    Yang, Dongdong
    INFORMATION SCIENCES, 2014, 273 : 112 - 131
  • [5] Fuzzy adaptive teaching-learning-based optimization for global numerical optimization
    Cheng, Min-Yuan
    Prayogo, Doddy
    NEURAL COMPUTING & APPLICATIONS, 2018, 29 (02) : 309 - 327
  • [6] Teaching-Learning-Based Optimization Enhanced With Multiobjective Sorting Based and Cooperative Learning
    Li, Wei
    Fan, Yaochi
    Xu, Qingzheng
    IEEE ACCESS, 2020, 8 : 65923 - 65937
  • [7] A survey of teaching-learning-based optimization
    Zou, Feng
    Chen, Debao
    Xu, Qingzheng
    NEUROCOMPUTING, 2019, 335 : 366 - 383
  • [8] A New Teaching-Learning-based Chicken Swarm Optimization Algorithm
    Deb, Sanchari
    Gao, Xiao-Zhi
    Tammi, Kari
    Kalita, Karuna
    Mahanta, Pinakeswar
    SOFT COMPUTING, 2020, 24 (07) : 5313 - 5331
  • [9] Collective information-based teaching-learning-based optimization for global optimization
    Peng, Zi Kang
    Zhang, Sheng Xin
    Zheng, Shao Yong
    Long, Yun Liang
    SOFT COMPUTING, 2019, 23 (22) : 11851 - 11866
  • [10] Multi-Objective Teaching-Learning-Based Optimization for Structure Optimization
    Kumar, Sumit
    Tejani, Ghanshyam G.
    Pholdee, Nantiwat
    Bureerat, Sujin
    Jangir, Pradeep
    SMART SCIENCE, 2022, 10 (01) : 56 - 67