Eco-friendly synthesis of silver and gold nanoparticles with enhanced antimicrobial, antioxidant, and catalytic activities

被引:63
|
作者
Vijayan, Remya [1 ]
Joseph, Siby [2 ]
Mathew, Beena [1 ]
机构
[1] Mahatma Gandhi Univ, Sch Chem Sci, Kottayam 686560, Kerala, India
[2] St Georges Coll, Dept Chem, Kottayam 686122, Kerala, India
关键词
transmission electron microscopy; visible spectra; surface plasmon resonance; nanofabrication; ultraviolet spectra; field emission electron microscopy; reduction (chemical); nanocomposites; microorganisms; nanoparticles; dyes; silver; X-ray diffraction; nanomedicine; gold; antibacterial activity; electron diffraction; infrared spectra; particle size; Fourier transform spectra; scanning electron microscopy; catalysis; crystal growth from solution; synthesised nanoparticles; gold nanoparticles; catalytic activities; electron diffraction patterns; antimicrobial activities; antioxidant activities; transmission electron microscopy images; 2; 2-diphenyl-1-picrylhydrazyl assay; Synedrella nodiflora; UV-Vis spectrum; silver nanoparticles; biofabrication; Fourier transform infrared spectroscopy; face-centred cubic geometry; area electron diffraction patterns; pathogenic strains; agar well diffusion method; anthropogenic pollutant dyes; Congo red; eosin Y; wavelength; 413; 0; nm; 535; Au; Ag; MICROWAVE-ASSISTED GREEN; LEAF EXTRACT; STRUCTURAL-CHARACTERIZATION; ESCHERICHIA-COLI; ANTIBACTERIAL; BIOSYNTHESIS; REDUCTION; DEGRADATION; ANTICANCER; OXIDATION;
D O I
10.1049/iet-nbt.2017.0311
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The present work is emphasised on the bio-fabrication of silver and gold nanoparticles in a single step by a microwave-assisted method using the leaf extract of Synedrella nodiflora as both reducing and stabilising agent. The synthesised nanoparticles are highly stable and show surface plasmon resonance peak at 413 and 535nm, respectively, for silver and gold nanoparticles in UV-Vis spectrum. The functional group responsible for the reduction of metal ions were obtained from Fourier transform infrared spectroscopy. The crystalline nature of nanoparticles with face-centred cubic geometry was confirmed by the X-ray diffraction and selected area electron diffraction patterns. The morphology and sizes of the silver and gold nanoparticles were obtained from transmission electron microscopy images. The nanoparticles exhibit effective antimicrobial activities against various pathogenic strains. These antimicrobial properties were analysed by employing agar well diffusion method. The nanoparticles show significant antioxidant properties, and it was determined using 2, 2-diphenyl-1-picrylhydrazyl assay. The nanoparticles also show potent catalytic activity in the degradation of anthropogenic pollutant dyes Congo red and eosin Y by excess NaBH4. Thus, the current study demonstrates the potential use of S. nodiflora as a reducing and stabilising agent for the synthesis of silver and gold nanoparticles and their relevance in the field of biomedicine and catalysis.
引用
收藏
页码:850 / 856
页数:7
相关论文
共 50 条
  • [41] Eco-friendly synthesis of silver nanoparticles using Umbrella plant, and evaluation of their photocatalytic and antibacterial activities
    Elemike, Elias Emeka
    Onwudiwe, Damian Chinedu
    Ekennia, Anthony Chinonso
    INORGANIC AND NANO-METAL CHEMISTRY, 2020, 50 (05) : 389 - 399
  • [42] Synthesis of eco-friendly nanocomposite with silver nanoparticle to increase the antimicrobial activity
    Maxwalt, Sheeba
    Rahupathy, Kumutha
    Suresh, Siva Nandhini
    Subramani, Ramesh
    Pushparaj, Charumathi
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 2822 - 2828
  • [43] Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles
    Maheshkumar Prakash Patil
    Gun-Do Kim
    Applied Microbiology and Biotechnology, 2017, 101 : 79 - 92
  • [44] Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles
    Patil, Maheshkumar Prakash
    Kim, Gun-Do
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2017, 101 (01) : 79 - 92
  • [45] PURPLE KOHLRABI PEEL, A NATURAL MATERIAL FOR ECO-FRIENDLY SILVER AND GOLD NANOPARTICLES
    Sorescu, Ana-Alexanda
    Nuta, Alexandrina
    Ion, Rodica-Mariana
    Grigore, Madalina
    Nistor, Cristina-Lavinia
    Suica-Bunghez, Ioana-Raluca
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2021, 20 (04): : 605 - 611
  • [46] Eco-friendly green synthesis of silver nanoparticles from Aegle marmelos leaf extract and their antimicrobial, antioxidant, anticancer and photocatalytic degradation activity
    Rama, P.
    Mariselvi, P.
    Sundaram, R.
    Muthu, K.
    HELIYON, 2023, 9 (06)
  • [47] Preparation, Characterization, Antioxidant and Antimicrobial Activities of Lignin and Eco-friendly Lignin Nanoparticles from Egyptian Cotton Stalks
    Ali, Mohamed A.
    Abdel-Moein, Nadia M.
    Owis, Amal S.
    Ahmed, Shaimaa E.
    Hanafy, Eman A.
    EGYPTIAN JOURNAL OF CHEMISTRY, 2022, 65 (01): : 703 - 716
  • [48] Eco-friendly synthesis of silver nanoparticles using leaf extract of Grewia flaviscences and study of their antimicrobial activity
    Sana, Siva Sankar
    Badineni, Venkata Ramana
    Arla, Sai Kumar
    Boya, Vijaya Kumar Naidu
    MATERIALS LETTERS, 2015, 145 : 347 - 350
  • [49] Cobweb as novel biomaterial for the green and eco-friendly synthesis of silver nanoparticles
    Lateef, A.
    Ojo, S. A.
    Azeez, M. A.
    Asafa, T. B.
    Yekeen, T. A.
    Akinboro, A.
    Oladipo, I. C.
    Gueguim-Kana, E. B.
    Beukes, L. S.
    APPLIED NANOSCIENCE, 2016, 6 (06) : 863 - 874
  • [50] Eco-friendly biogenic silver nanoparticles: synthesis, characterization and biological applications
    Korkmaz, N.
    Ceylan, Y.
    Imamoglu, R.
    Kisa, D.
    Sen, F.
    Karadag, A.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2025, 22 (05) : 3707 - 3716