Eco-friendly synthesis of silver and gold nanoparticles with enhanced antimicrobial, antioxidant, and catalytic activities

被引:63
|
作者
Vijayan, Remya [1 ]
Joseph, Siby [2 ]
Mathew, Beena [1 ]
机构
[1] Mahatma Gandhi Univ, Sch Chem Sci, Kottayam 686560, Kerala, India
[2] St Georges Coll, Dept Chem, Kottayam 686122, Kerala, India
关键词
transmission electron microscopy; visible spectra; surface plasmon resonance; nanofabrication; ultraviolet spectra; field emission electron microscopy; reduction (chemical); nanocomposites; microorganisms; nanoparticles; dyes; silver; X-ray diffraction; nanomedicine; gold; antibacterial activity; electron diffraction; infrared spectra; particle size; Fourier transform spectra; scanning electron microscopy; catalysis; crystal growth from solution; synthesised nanoparticles; gold nanoparticles; catalytic activities; electron diffraction patterns; antimicrobial activities; antioxidant activities; transmission electron microscopy images; 2; 2-diphenyl-1-picrylhydrazyl assay; Synedrella nodiflora; UV-Vis spectrum; silver nanoparticles; biofabrication; Fourier transform infrared spectroscopy; face-centred cubic geometry; area electron diffraction patterns; pathogenic strains; agar well diffusion method; anthropogenic pollutant dyes; Congo red; eosin Y; wavelength; 413; 0; nm; 535; Au; Ag; MICROWAVE-ASSISTED GREEN; LEAF EXTRACT; STRUCTURAL-CHARACTERIZATION; ESCHERICHIA-COLI; ANTIBACTERIAL; BIOSYNTHESIS; REDUCTION; DEGRADATION; ANTICANCER; OXIDATION;
D O I
10.1049/iet-nbt.2017.0311
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The present work is emphasised on the bio-fabrication of silver and gold nanoparticles in a single step by a microwave-assisted method using the leaf extract of Synedrella nodiflora as both reducing and stabilising agent. The synthesised nanoparticles are highly stable and show surface plasmon resonance peak at 413 and 535nm, respectively, for silver and gold nanoparticles in UV-Vis spectrum. The functional group responsible for the reduction of metal ions were obtained from Fourier transform infrared spectroscopy. The crystalline nature of nanoparticles with face-centred cubic geometry was confirmed by the X-ray diffraction and selected area electron diffraction patterns. The morphology and sizes of the silver and gold nanoparticles were obtained from transmission electron microscopy images. The nanoparticles exhibit effective antimicrobial activities against various pathogenic strains. These antimicrobial properties were analysed by employing agar well diffusion method. The nanoparticles show significant antioxidant properties, and it was determined using 2, 2-diphenyl-1-picrylhydrazyl assay. The nanoparticles also show potent catalytic activity in the degradation of anthropogenic pollutant dyes Congo red and eosin Y by excess NaBH4. Thus, the current study demonstrates the potential use of S. nodiflora as a reducing and stabilising agent for the synthesis of silver and gold nanoparticles and their relevance in the field of biomedicine and catalysis.
引用
收藏
页码:850 / 856
页数:7
相关论文
共 50 条
  • [11] Cellulose/silver nanoparticles composite microspheres: eco-friendly synthesis and catalytic application
    Junjie Wu
    Ning Zhao
    Xiaoli Zhang
    Jian Xu
    Cellulose, 2012, 19 : 1239 - 1249
  • [12] Cellulose/silver nanoparticles composite microspheres: eco-friendly synthesis and catalytic application
    Wu, Junjie
    Zhao, Ning
    Zhang, Xiaoli
    Xu, Jian
    CELLULOSE, 2012, 19 (04) : 1239 - 1249
  • [13] Eco-friendly green synthesis of silver nanoparticles using salmalia malabarica: synthesis, characterization, antimicrobial, and catalytic activity studies
    Krishna, I. Murali
    Reddy, G. Bhagavanth
    Veerabhadram, G.
    Madhusudhan, A.
    APPLIED NANOSCIENCE, 2016, 6 (05) : 681 - 689
  • [14] Eco-friendly green synthesis of silver nanoparticles using salmalia malabarica: synthesis, characterization, antimicrobial, and catalytic activity studies
    I. Murali Krishna
    G. Bhagavanth Reddy
    G. Veerabhadram
    A. Madhusudhan
    Applied Nanoscience, 2016, 6 : 681 - 689
  • [15] Synthesis of silver nanoparticles in an eco-friendly way using Phyllanthus amarus leaf extract: Antimicrobial and catalytic activity
    Ajitha, B.
    Reddy, Y. Ashok Kumar
    Jeon, Hwan-Jin
    Ahn, Chi Won
    ADVANCED POWDER TECHNOLOGY, 2018, 29 (01) : 86 - 93
  • [16] Eco-friendly synthesis of Solanum trilobatum extract-capped silver nanoparticles is compatible with good antimicrobial activities
    Ramanathan, Santheraleka
    Gopinath, Subash C. B.
    Anbu, Periasamy
    Lakshmipriya, Thangavel
    Kasim, Farizul Hafiz
    Lee, Choul-Gyun
    JOURNAL OF MOLECULAR STRUCTURE, 2018, 1160 : 80 - 91
  • [17] SYNTHESIS OF ECO-FRIENDLY SILVER NANOPARTICLES USING PLANT EXTRACTS AND ASSESSMENT OF THEIR ANTIMICROBIAL ACTIVITY
    Ibrahim, Mohamed M.
    Hazani, Amal A.
    Al-Homidan, Ali
    Shehata, Afaf
    El-Gaaly, Gehan A.
    Al-Jafari, Abdulaziz
    Ataya, Farid
    Rizwana, Humaira
    Al-Hori, Hadeel
    Moubayed, Nadine
    FRESENIUS ENVIRONMENTAL BULLETIN, 2014, 23 (1A): : 184 - 189
  • [18] Eco-friendly synthesis of silver nanoparticles from macroalgae: optimization, characterization and antimicrobial activity
    Kocer, Anil Tevfik
    Ozcimen, Didem
    BIOMASS CONVERSION AND BIOREFINERY, 2025, 15 (02) : 1995 - 2006
  • [19] Green Synthesis of Gold Nanoparticles: An Eco-Friendly Approach
    Santhosh, Poornima Budime
    Genova, Julia
    Chamati, Hassan
    CHEMISTRY-SWITZERLAND, 2022, 4 (02): : 345 - 369
  • [20] Eco-friendly synthesis of silver nanoparticles from macroalgae: optimization, characterization and antimicrobial activity
    Kocer, Anil Tevfik
    Ozcimen, Didem
    BIOMASS CONVERSION AND BIOREFINERY, 2025, 15 (02) : 1995 - 2006