Optimal transport maps on Alexandrov spaces revisited

被引:1
作者
Rajala, Tapio [1 ]
Schultz, Timo [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35 MaD, Jyvaskyla 40014, Finland
关键词
METRIC-MEASURE-SPACES; RICCI CURVATURE; CYCLICAL MONOTONICITY; POLAR FACTORIZATION; EXISTENCE; GEOMETRY; UNIQUENESS;
D O I
10.1007/s00229-021-01333-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an alternative proof for the fact that in n-dimensional Alexandrov spaces with curvature bounded below there exists a unique optimal transport plan from any purely (n - 1)-unrectifiable starting measure, and that this plan is induced by an optimal map. Our proof does not rely on the full optimality of a given plan but rather on the c-monotonicity, thus we obtain the existence of transport maps for wider class of (possibly non-optimal) transport plans.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 46 条
[41]  
Shiohama K., 1993, INTRO GEOMETRY ALEXA, V8
[42]   NOTE ON THE OPTIMAL TRANSPORTATION OF DISTRIBUTIONS [J].
SMITH, CS ;
KNOTT, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1987, 52 (02) :323-329
[43]  
Sturm KT, 2006, ACTA MATH-DJURSHOLM, V196, P65, DOI 10.1007/s11511-006-0002-8
[44]  
Villani C, 2009, GRUNDLEHR MATH WISS, V338, P5
[45]  
Zajicek L., 1978, COMMENT MATH U CAROL, V19, P179
[46]   DENSE SINGLE VALUEDNESS OF MONOTONE OPERATORS [J].
ZARANTONELLO, EH .
ISRAEL JOURNAL OF MATHEMATICS, 1973, 15 (02) :158-166