Optimal transport maps on Alexandrov spaces revisited

被引:1
作者
Rajala, Tapio [1 ]
Schultz, Timo [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35 MaD, Jyvaskyla 40014, Finland
关键词
METRIC-MEASURE-SPACES; RICCI CURVATURE; CYCLICAL MONOTONICITY; POLAR FACTORIZATION; EXISTENCE; GEOMETRY; UNIQUENESS;
D O I
10.1007/s00229-021-01333-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an alternative proof for the fact that in n-dimensional Alexandrov spaces with curvature bounded below there exists a unique optimal transport plan from any purely (n - 1)-unrectifiable starting measure, and that this plan is induced by an optimal map. Our proof does not rely on the full optimality of a given plan but rather on the c-monotonicity, thus we obtain the existence of transport maps for wider class of (possibly non-optimal) transport plans.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 46 条
[1]   Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces [J].
Ambrosio, Luigi ;
Mondino, Andrea ;
Savare, Giuseppe .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 262 (1270) :1-+
[2]   RIEMANNIAN RICCI CURVATURE LOWER BOUNDS IN METRIC MEASURE SPACES WITH σ-FINITE MEASURE [J].
Ambrosio, Luigi ;
Gigli, Nicola ;
Mondino, Andrea ;
Rajala, Tapio .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (07) :4661-4701
[3]   METRIC MEASURE SPACES WITH RIEMANNIAN RICCI CURVATURE BOUNDED FROM BELOW [J].
Ambrosio, Luigi ;
Gigli, Nicola ;
Savare, Giuseppe .
DUKE MATHEMATICAL JOURNAL, 2014, 163 (07) :1405-1490
[4]   Slopes of Kantorovich potentials and existence of optimal transport maps in metric measure spaces [J].
Ambrosio, Luigi ;
Rajala, Tapio .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (01) :71-87
[5]   Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below [J].
Ambrosio, Luigi ;
Gigli, Nicola ;
Savare, Giuseppe .
INVENTIONES MATHEMATICAE, 2014, 195 (02) :289-391
[7]  
Bertrand, 2015, ALEXANDROV KANTOROVI
[8]   Existence and uniqueness of optimal maps on Alexandrov spaces [J].
Bertrand, Jerome .
ADVANCES IN MATHEMATICS, 2008, 219 (03) :838-851
[9]   The Monge Problem for Distance Cost in Geodesic Spaces [J].
Bianchini, Stefano ;
Cavalletti, Fabio .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 318 (03) :615-673