Image Semantic Representation for Event Understanding

被引:2
作者
Rodrigues, Caroline Mazini [1 ]
Pereira, Luis [1 ]
Rocha, Anderson [1 ]
Dias, Zanoni [1 ]
机构
[1] Univ Estadual Campinas, Inst Comp, Campinas, SP, Brazil
来源
2019 IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS) | 2019年
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1109/wifs47025.2019.9035102
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Different events, such as terrorist acts and natural catastrophes, frequently occur across the world. The availability of images on the internet can help to understand events. However, manually selecting representative (helpful) images from a massive amount of data can be infeasible. Here, we propose an image semantic representation method that helps to understand the discrimination of Representative Images (RI) from Nonrepresentative Images (NRI). Our method, called Event Semantic Space (ESS), generates a low-dimensional image representation by exploiting the semantics of some images with high representativeness and some representative components of the events (e.g., places, objects, and people). Results on three real-world events attest the capability of our method to represent events, outperforming three image descriptors individually in ranking tasks and presenting capability of learning patterns of Representative Images.
引用
收藏
页数:6
相关论文
共 18 条
[1]   Semantic content-based image retrieval: A comprehensive study [J].
Alzu'bi, Ahmad ;
Amira, Abbes ;
Ramzan, Naeem .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2015, 32 :20-54
[2]  
Fox E. A., 1994, Second Text REtrieval Conference (TREC-2) (NIST-SP 500-215), P243
[3]   Socializing the Semantic Gap: A Comparative Survey on Image Tag Assignment, Refinement, and Retrieval [J].
Li, Xirong ;
Uricchio, Tiberio ;
Ballan, Lamberto ;
Bertini, Marco ;
Snoek, Cees G. M. ;
Del Bimbo, Alberto .
ACM COMPUTING SURVEYS, 2016, 49 (01)
[4]  
Lin ZJ, 2015, PROC CVPR IEEE, P3864, DOI 10.1109/CVPR.2015.7299011
[5]   Social representations of events and people in world history across 12 cultures [J].
Liu, JH ;
Goldstein-Hawes, R ;
Hilton, D ;
Huang, LL ;
Gastardo-Conaco, C ;
Dresler-Hawke, E ;
Pittolo, F ;
Hong, YY ;
Ward, C ;
Abraham, S ;
Kashima, Y ;
Kashima, E ;
Ohashi, MM ;
Yuki, M ;
Hidaka, Y .
JOURNAL OF CROSS-CULTURAL PSYCHOLOGY, 2005, 36 (02) :171-191
[6]  
LLOYD SP, 1982, IEEE T INFORM THEORY, V28, P129, DOI 10.1109/TIT.1982.1056489
[7]  
Naaman M., 2011, P INT AAAI C WEB SOC, P438
[8]   Event retrieval in large video collections with circulant temporal encoding [J].
Revaud, Jerome ;
Douze, Matthijs ;
Schmid, Cordelia ;
Jegou, Herve .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :2459-2466
[9]   ImageNet Large Scale Visual Recognition Challenge [J].
Russakovsky, Olga ;
Deng, Jia ;
Su, Hao ;
Krause, Jonathan ;
Satheesh, Sanjeev ;
Ma, Sean ;
Huang, Zhiheng ;
Karpathy, Andrej ;
Khosla, Aditya ;
Bernstein, Michael ;
Berg, Alexander C. ;
Fei-Fei, Li .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 115 (03) :211-252
[10]   Object Detection for Crime Scene Evidence Analysis Using Deep Learning [J].
Saikia, Surajit ;
Fidalgo, E. ;
Alegre, Enrique ;
Fernandez-Robles, Laura .
IMAGE ANALYSIS AND PROCESSING (ICIAP 2017), PT II, 2017, 10485 :14-24