The central limit theorem for local linear statistics in classical compact groups and related combinatorial identities

被引:100
作者
Soshnikov, A [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
关键词
central limit theorem; random matrices; compact groups and Kac-Spitzer combinatorial lemma;
D O I
10.1214/aop/1019160338
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss the CLT for the global and local linear statistics of random matrices from classical compact groups. The main parts of our proofs are certain combinatorial identities, much in the spirit of works by M. Kac and H. Spohn.
引用
收藏
页码:1353 / 1370
页数:18
相关论文
共 41 条
[1]  
Andersen ES, 1953, SKAND AKTUARIETIDSKR, V36, P123
[2]  
Andreief C., 1886, Mem. Soc. Sci., V2, P1
[3]   Finite-N fluctuation formulas for random matrices [J].
Baker, TH ;
Forrester, PJ .
JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (5-6) :1371-1386
[4]   TOEPLITZ AND WIENER-HOPF DETERMINANTS WITH PIECEWISE CONTINUOUS SYMBOLS [J].
BASOR, E ;
WIDOM, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1983, 50 (03) :387-413
[5]   Distribution functions for random variables for ensembles of positive Hermitian matrices [J].
Basor, EL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 188 (02) :327-350
[6]  
BAXTER G, 1963, Z WAHRSCHEINLICHKEIT, V1, P263
[7]   THE ONSAGER FORMULA, THE FISHER-HARTWIG CONJECTURE, AND THEIR INFLUENCE ON RESEARCH INTO TOEPLITZ-OPERATORS [J].
BOTTCHER, A .
JOURNAL OF STATISTICAL PHYSICS, 1995, 78 (1-2) :575-584
[8]  
Bottcher A., 1999, INTRO LARGE TRUNCATE
[9]  
Boutet de Monvel A., 1999, RANDOM OPER STOCH EQ, V7, P149, DOI DOI 10.1515/ROSE.1999.7.2.149
[10]   GAUSSIAN FLUCTUATION IN RANDOM MATRICES [J].
COSTIN, O ;
LEBOWITZ, JL .
PHYSICAL REVIEW LETTERS, 1995, 75 (01) :69-72