Extremal problems on sum-free sets and coverings in tridimensional spaces

被引:3
作者
Monte Carmelo, E. L. [1 ]
de Mendonca Neto, C. F. X. [2 ]
机构
[1] Univ Estadual Maringa, Dept Matemat, BR-87020900 Maringa, Parana, Brazil
[2] Univ Sao Paulo, Escola Artes Ciencias & Humanidades, Sao Paulo, Brazil
关键词
Short coverings; extremal problems; sum-free sets; cyclic groups;
D O I
10.1007/s00010-009-2971-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a prime power q, define c (q) as the minimum cardinality of a subset H of F 3 q which satisfies the following property: every vector in this space di ff ers in at most 1 coordinate from a multiple of a vector in H. In this work, we introduce two extremal problems in combinatorial number theory aiming to discuss a known connection between the corresponding coverings and sum-free sets. Also, we provide several bounds on these maps which yield new classes of coverings, improving the previous upper bound on c (q)
引用
收藏
页码:101 / 112
页数:12
相关论文
共 12 条
[1]   Short coverings in tridimensional spaces arising from sum-free sets [J].
Carmelo, E. L. Monte ;
Nakaoka, I. N. .
EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (01) :227-233
[2]   ON COVERING AND COLORING PROBLEMS FOR ROOK DOMAINS [J].
CARNIELLI, WA .
DISCRETE MATHEMATICS, 1985, 57 (1-2) :9-16
[3]  
DADDEL AA, 2007, AEQUATIONES MATH, V73, P301
[4]  
DADDEL AA, 1996, AEQUATIONES MATH, V51, P137
[5]  
DICKSON TJ, 1971, J LOND MATH SOC, V3, P222
[6]  
Kalbfleisch J.G., 1969, J LOND MATH SOC, V44, P60
[7]  
Monte Carmelo E.L., 2007, INT J APPL MATH, V20, P875
[8]  
Stanton R.G, 1968, Aequ. Math., V1, P94
[9]  
Taussky O., 1948, ANN SOC MATH POLON, V21, P303
[10]  
Tsuzuko T., 1982, FINITE GROUPS FINITE