Scattering of g-process longitudinal optical phonons at hotspots in silicon -: art. no. 023702

被引:48
作者
Sinha, S [1 ]
Schelling, PK
Phillpot, SR
Goodson, KE
机构
[1] Stanford Univ, Dept Mech Engn, Thermosci Div, Stanford, CA 94305 USA
[2] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[3] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA
[4] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
[5] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[6] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[7] Stanford Univ, Dept Mech Engn, Thermosci Div, Stanford, CA 94305 USA
关键词
D O I
10.1063/1.1831549
中图分类号
O59 [应用物理学];
学科分类号
摘要
Transistors with gate lengths below 100 nm generate phonon hotspots with dimensions on the order of 10 nm and peak power densities of about 50 W/mum(3). This work employs molecular dynamics to investigate the impact of lattice energy density on phonon scattering at the hotspot. The hotspot studied in this work consists of longitudinal optical phonons involved in the g-type intervalley scattering of conduction electrons in silicon. A comparison of the decay modes in hotspots with high and moderate energy densities reveals that the decay mechanisms are the same but the relaxation rates differ. Scattering occurs through a three phonon process of the form LO-->LA+TA, involving the zone-edge transverse acoustic modes. An increase in the energy density from a moderate value of 5 to 125 W/mum(3) changes the relaxation time from 79 to 16 ps, approximately proportional to the the maximum initial amplitude of the phonons. This work improves the accuracy of the scattering rates of optical phonons and helps in advancing the electro-thermal modeling of nanotransistors. (C) 2005 American Institute of Physics.
引用
收藏
页数:9
相关论文
共 28 条
[1]  
Allen M. P., 2009, Computer Simulation of Liquids
[2]   Calculation of vibrational lifetimes in amorphous silicon using molecular dynamics simulations [J].
Bickham, SR ;
Feldman, JL .
PHYSICAL REVIEW B, 1998, 57 (19) :12234-12238
[3]  
Born M., 1954, DYNAMICAL THEORY CRY
[4]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[5]   Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles [J].
Chen, G .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1996, 118 (03) :539-545
[6]   ANHARMONIC PHONON LIFETIMES IN SEMICONDUCTORS FROM DENSITY-FUNCTIONAL PERTURBATION-THEORY [J].
DEBERNARDI, A ;
BARONI, S ;
MOLINARI, E .
PHYSICAL REVIEW LETTERS, 1995, 75 (09) :1819-1822
[7]   Anharmonic decay of vibrational states in amorphous silicon [J].
Fabian, J ;
Allen, PB .
PHYSICAL REVIEW LETTERS, 1996, 77 (18) :3839-3842
[8]  
Ferry D. K., 2000, SEMICONDUCTOR TRANSP
[9]   1ST-ORDER OPTICAL AND INTERVALLEY SCATTERING IN SEMICONDUCTORS [J].
FERRY, DK .
PHYSICAL REVIEW B, 1976, 14 (04) :1605-1609
[10]   ANHARMONIC THERMAL RESISTIVITY OF DIELECTRIC CRYSTALS AT LOW-TEMPERATURES [J].
HAN, YJ ;
KLEMENS, PG .
PHYSICAL REVIEW B, 1993, 48 (09) :6033-6042