Path integrals and perturbation theory for stochastic processes

被引:24
作者
Dickman, R [1 ]
Vidigal, R [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil
关键词
D O I
10.1590/S0103-97332003000100005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review and extend the formalism introduced by Peliti, that maps a Markov process to a path-integral representation. After developing the mapping, we apply it to some illustrative examples: the simple decay process, the birth-and-death process, and the Malthus-Verhulst process. In the first two cases we show how to obtain the exact probability generating function using the path integral. We show how to implement a diagrammatic perturbation theory for processes that do not admit an exact solution. Analysis of a set of coupled Malthus-Verhulst processes on a lattice leads, in the continuum limit, to a field theory for directed percolation and allied models.
引用
收藏
页码:73 / 93
页数:21
相关论文
共 24 条
[1]  
[Anonymous], 1975, Essentials of Pade Approximations
[2]  
Binney J., 1992, THEORY CRITICAL PHEN
[3]   DIRECTED PERCOLATION AND REGGEON FIELD-THEORY [J].
CARDY, JL ;
SUGAR, RL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (12) :L423-L427
[4]  
CARDY JL, 1996, SCALING RENORMALIZAT, pCH10
[5]   POISSON REPRESENTATION .2. 2-TIME CORRELATION-FUNCTIONS [J].
CHATURVEDI, S ;
GARDINER, CW .
JOURNAL OF STATISTICAL PHYSICS, 1978, 18 (05) :501-522
[6]   RANDOM SEQUENTIAL ADSORPTION - SERIES AND VIRIAL EXPANSIONS [J].
DICKMAN, R ;
WANG, JS ;
JENSEN, I .
JOURNAL OF CHEMICAL PHYSICS, 1991, 94 (12) :8252-8257
[7]  
DOI M, 1976, J PHYS A-MATH GEN, V9, P1465, DOI 10.1088/0305-4470/9/9/008
[8]  
Dominicis CD., 1976, J PHYS-PARIS, V37, P247, DOI 10.1051/jphyscol:1976138
[9]   EQUIVALENCE BETWEEN POISSON REPRESENTATION AND FOCK SPACE FORMALISM FOR BIRTH-DEATH PROCESSES [J].
DROZ, M ;
MCKANE, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (13) :L467-L474
[10]   NON-EQUILIBRIUM SCALING IN THE SCHLOGL MODEL [J].
ELDERFIELD, D ;
VVEDENSKY, DD .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (13) :2591-2601