Pseudomonotone variational inequalities: Convergence of the auxiliary problem method

被引:21
作者
El Farouq, N [1 ]
机构
[1] Univ Clermont Ferrand, Toulouse, France
[2] CNRS, LAAS, F-31077 Toulouse, France
关键词
variational inequalities; optimization problems; generalized monotonicity; pseudomonotonicity; convergence of algorithms;
D O I
10.1023/A:1012234817482
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper deals with the convergence of the algorithm built on the auxiliary problem principle for solving pseudomonotone (in the sense of Karamardian) variational inequalities.
引用
收藏
页码:305 / 326
页数:22
相关论文
共 31 条
[1]  
[Anonymous], SIAM J CONTROL OPTIM
[2]   QUASI-CONCAVE PROGRAMMING [J].
ARROW, KJ ;
ENTHOVEN, AC .
ECONOMETRICA, 1961, 29 (04) :779-800
[3]  
Auslender A., 1976, Optimization. Methodes Numeriques
[4]  
Bregman LM, 1967, USSR Computational Mathematics and Mathematical Physics, V7, P200
[5]   NON-LINEAR EQUATIONS AND INEQUATIONS IN DUAL VECTORIAL SPACES [J].
BREZIS, H .
ANNALES DE L INSTITUT FOURIER, 1968, 18 (01) :115-&
[7]   AUXILIARY PROBLEM PRINCIPLE EXTENDED TO VARIATIONAL-INEQUALITIES [J].
COHEN, G .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1988, 59 (02) :325-333
[8]   AUXILIARY PROBLEM PRINCIPLE AND DECOMPOSITION OF OPTIMIZATION PROBLEMS [J].
COHEN, G .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1980, 32 (03) :277-305
[9]   NESTED MONOTONY FOR VARIATIONAL-INEQUALITIES OVER PRODUCT OF SPACES AND CONVERGENCE OF ITERATIVE ALGORITHMS [J].
COHEN, G ;
CHAPLAIS, F .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1988, 59 (03) :369-390
[10]  
COHEN G, 1983, DECOMPOSITION COORDI, V1, P203