On an (ε, δ)-trans-Sasakian structure

被引:7
|
作者
Nagaraja, Halammanavar G. [1 ]
Premalatha, Rangaswami C. [1 ]
Somashekara, Ganganna [1 ]
机构
[1] Bangalore Univ, Dept Math, Bangalore 56001, Karnataka, India
关键词
trans-Sasakian manifold; Einstein manifold; phi-recurrent; (alpha; delta)-trans-Sasakian; pseudo-projective Ricci tensor;
D O I
10.3176/proc.2012.1.03
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we investigate (epsilon, delta)-trans-Sasakian manifolds which generalize the notion of (epsilon)-Sasakian and (epsilon, delta)-Kenmotsu manifolds. We prove the existence of such a structure by an example and we consider phi-recurrent, pseudoprojectively flat and pseudo-projective semi-symmetric (epsilon, delta)-trans-Sasakian manifolds.
引用
收藏
页码:20 / 28
页数:9
相关论文
共 50 条
  • [21] Critical Point Equation on 3-Dimensional Trans-Sasakian Manifolds
    Dey, Dibakar
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (02): : 653 - 663
  • [22] On a class of three-dimensional trans-Sasakian manifolds
    De, Uday Chand
    De, Krishnendu
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 27 (04): : 795 - 808
  • [23] On trans-Sasakian 3-manifolds as η-Einstein solitons
    Ganguly, D.
    Dey, S.
    Bhattacharyya, A.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2021, 13 (02) : 460 - 474
  • [24] EINSTEIN-WEYL STRUCTURES ON TRANS-SASAKIAN MANIFOLDS
    Chen, Xiaomin
    MATHEMATICA SLOVACA, 2019, 69 (06) : 1425 - 1436
  • [25] ON GENERALIZED M-PROJECTIVE phi-RECURRENT TRANS-SASAKIAN MANIFOLDS
    Jaiswal, Jai Prakash
    Yadav, Arjun Singh
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2016, 31 (05): : 1051 - 1060
  • [26] Submersion of Semi-Invariant Submanifolds of Trans-Sasakian Manifold
    Shahid, Mohammad Hasan
    Al-Solamy, Falleh R.
    Jun, Jae-Bok
    Ahmad, Mobin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (01) : 63 - 71
  • [27] η-Ricci Solitons on 3-dimensional Trans-Sasakian Manifolds
    Pahan, Sampa
    CUBO-A MATHEMATICAL JOURNAL, 2020, 22 (01): : 23 - 37
  • [28] SEMI GENERALIZED phi-RECURRENT TRANS-SASAKIAN MANIFOLDS
    Chowdhury, Jagannath
    Kumar, Rajesh
    Singh, Jay P.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2016, 31 (04): : 863 - 871
  • [29] Non-existence of harmonic maps on trans-Sasakian manifolds
    Jaiswal A.J.P.
    Pandey B.A.
    Lobachevskii Journal of Mathematics, 2016, 37 (2) : 185 - 192
  • [30] CONFORMAL RICCI SOLITONS ON 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLD
    Roy, Soumendu
    Bhattacharyya, Arindam
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 13 (01): : 89 - 109