Finite Variation of Fractional L,vy Processes

被引:24
作者
Bender, Christian [2 ]
Lindner, Alexander [1 ]
Schicks, Markus [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Math Stochast, D-38106 Braunschweig, Germany
[2] Univ Saarland, Fachrichtung Math, D-66041 Saarbrucken, Germany
关键词
Finite variation; Fractional integration; Fractional Levy process; Levy process; Semimartingale property; LEVY PROCESSES;
D O I
10.1007/s10959-010-0339-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Various characterizations for fractional L,vy processes to be of finite variation are obtained, one of which is in terms of the characteristic triplet of the driving L,vy process, while others are in terms of differentiability properties of the sample paths. A zero-one law and a formula for the expected total variation are also given.
引用
收藏
页码:594 / 612
页数:19
相关论文
共 11 条
  • [1] Levy driven moving averages and semimartingales
    Basse, Andreas
    Pedersen, Jan
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (09) : 2970 - 2991
  • [2] On roughness indices for fractional fields
    Benassi, A
    Cohen, S
    Istas, J
    [J]. BERNOULLI, 2004, 10 (02) : 357 - 373
  • [3] Benassi A, 2002, BERNOULLI, V8, P97
  • [4] Passage of levy processes across power law boundaries at small times
    Bertoin, J.
    Doney, R. A.
    Maller, R. A.
    [J]. ANNALS OF PROBABILITY, 2008, 36 (01) : 160 - 197
  • [5] Bretagnolle J., 1972, LECT NOTES MATH, V258, P64
  • [6] Kallenberg O., 2002, Foundations of Modern Probability, Probability and its Applications, V2nd
  • [7] Fractional Levy processes with an application to long memory moving average processes
    Marquardt, Tina
    [J]. BERNOULLI, 2006, 12 (06) : 1099 - 1126
  • [8] Mishura Y. S., 2008, LECT NOTES MATH, V1929
  • [9] Samorodnitsky G., 1994, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Stochastic Modeling
  • [10] Sato K., 1999, LEVY PROCESSES INFIN