On the rate of convergence of discretely defined operators

被引:1
|
作者
Gavrea, Ioan [1 ]
Ivan, Mircea [1 ]
机构
[1] Tech Univ Cluj Napoca, Dept Math, Cluj Napoca 400114, Romania
关键词
Bernstein operators; Positive linear operators; Central moments; Rate of convergence; APPROXIMATION; INEQUALITY;
D O I
10.1016/j.jmaa.2015.06.062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that a result of Tachev concerning the optimal rate of convergence of the classical Bernstein operators remains valid for the class of discretely defined positive linear operators preserving constants. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:129 / 133
页数:5
相关论文
共 50 条
  • [41] Convergence rate of Krasulina estimator
    Chen, Jiangning
    STATISTICS & PROBABILITY LETTERS, 2019, 155
  • [42] On the Rate of Convergence of Greedy Algorithms
    Temlyakov, Vladimir
    MATHEMATICS, 2023, 11 (11)
  • [43] Rate of Convergence of Modified Schurer-Type q-Bernstein Kantorovich Operators
    Sidharth, Manjari
    Agrawal, P. N.
    MATHEMATICAL ANALYSIS AND ITS APPLICATIONS, 2015, 143 : 243 - 253
  • [44] Convergence Rate of Szász Operators Involving Boas–Buck-Type Polynomials
    Özlem Öksüzer Yılık
    Tarul Garg
    P. N. Agrawal
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2022, 92 : 13 - 22
  • [45] Rate of convergence of Szász-Durrmeyer type operators involving Hermite polynomials
    Kumar A.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2024, 70 (4) : 1527 - 1543
  • [46] Convergence of λ-Bernstein operators based on (p, q)-integers
    Qing-Bo Cai
    Wen-Tao Cheng
    Journal of Inequalities and Applications, 2020
  • [47] Rate of convergence of exponential type operators related to p(x)=2x3/2 for functions of bounded variation
    Abel, Ulrich
    Gupta, Vijay
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (04)
  • [48] Convergence processes of approximating operators
    Atlihan, Ozlem Girgin
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (04): : 813 - 821
  • [49] Rate of convergence of Thresholding Greedy Algorithms
    Temlyakov, V. N.
    SBORNIK MATHEMATICS, 2024, 215 (02) : 275 - 289
  • [50] Rate of Weighted Statistical Convergence for Generalized Blending-Type Bernstein-Kantorovich Operators
    Ozger, Faruk
    Aljimi, Ekrem
    Ersoy, Merve Temizer
    MATHEMATICS, 2022, 10 (12)