Video super-resolution with inverse recurrent net and hybrid local fusion

被引:8
|
作者
Li, Dingyi [1 ,2 ]
Wang, Zengfu [3 ,4 ]
Yang, Jian [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, PCA Lab,Minist Educ, Key Lab Intelligent Percept & Syst High Dimens In, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Jiangsu Key Lab Image & Video Understanding Socia, Nanjing 210094, Jiangsu, Peoples R China
[3] Chinese Acad Sci, Inst Intelligent Machines, Hefei 230031, Anhui, Peoples R China
[4] Univ Sci & Technol China, Dept Automation, Hefei 230027, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Video super-resolution; Bidirectional recurrent convolutional neural; network; Sliding-window; Local fusion; IMAGE SUPERRESOLUTION;
D O I
10.1016/j.neucom.2022.03.019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video super-resolution converts low-resolution videos to sharp high-resolution ones. In order to make better use of temporal information in video super-resolution, we design inverse recurrent net and hybrid local fusion. We concatenate the original low-resolution input sequence and its inverse sequence repeatedly. The new sequence is viewed as a combination of different stages, and is processed sequentially by using orent net. The outputs of the last two stages in opposite directions are fused to generate the final images. Our inverse recurrent net can extract more bidirectional temporal information in the input sequence, without adding parameter to the corresponding unidirectional recurrent net. We also propose a hybrid local fusion method which uses parallel fusion and cascade fusion for incorporating slidingwindow-based methods into our inverse recurrent net. Extensive experimental results demonstrate the effectiveness of the proposed inverse recurrent net and hybrid local fusion, in terms of visual quality and quantitative evaluations. The code will be released at https://github.com/5ofwind. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:40 / 51
页数:12
相关论文
共 50 条
  • [21] Deep Video Super-Resolution Using Hybrid Imaging System
    Feng, Zicheng
    Zhang, Wenlong
    Liang, Shunkun
    Yu, Qifeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (09) : 4855 - 4867
  • [22] Video Super-Resolution Using Non-Simultaneous Fully Recurrent Convolutional Network
    Li, Dingyi
    Liu, Yu
    Wang, Zengfu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (03) : 1342 - 1355
  • [23] Global-local fusion network for face super-resolution
    Lu, Tao
    Wang, Jiaming
    Jiang, Junjun
    Zhang, Yanduo
    NEUROCOMPUTING, 2020, 387 : 309 - 320
  • [24] Bidirectional Temporal-Recurrent Propagation Networks for Video Super-Resolution
    Han, Lei
    Fan, Cien
    Yang, Ye
    Zou, Lian
    ELECTRONICS, 2020, 9 (12) : 1 - 15
  • [25] A Fast and Scalable Frame-Recurrent Video Super-Resolution Framework
    Hou, Kaixuan
    Luo, Jianping
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT IV, 2024, 14450 : 310 - 325
  • [26] Video super-resolution via mixed spatial-temporal convolution and selective fusion
    Sun, Wei
    Gong, Dong
    Shi, Javen Qinfeng
    van den Hengel, Anton
    Zhang, Yanning
    PATTERN RECOGNITION, 2022, 126
  • [27] Audio Matters in Video Super-Resolution by Implicit Semantic Guidance
    Chen, Yanxiang
    Zhao, Pengcheng
    Qi, Meibin
    Zhao, Yang
    Jia, Wei
    Wang, Ronggang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 4128 - 4142
  • [28] Position-Guided Multi-Head Alignment and Fusion for Video Super-Resolution
    Gao, Yanbo
    Cai, Xun
    Li, Shuai
    Chai, Jiajing
    Li, Chuankun
    ELECTRONICS, 2024, 13 (22)
  • [29] Multi-Stage Feature Fusion Network for Video Super-Resolution
    Song, Huihui
    Xu, Wenjie
    Liu, Dong
    Liu, Bo
    Liu, Qingshan
    Metaxas, Dimitris N.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 2923 - 2934
  • [30] Video Super-Resolution With Convolutional Neural Networks
    Kappeler, Armin
    Yoo, Seunghwan
    Dai, Qiqin
    Katsaggelos, Aggelos K.
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2016, 2 (02) : 109 - 122