Bulk universality holds in measure for compactly supported measures

被引:16
作者
Lubinsky, Doron S. [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2012年 / 116卷
基金
美国国家科学基金会;
关键词
EIGENVALUE CORRELATIONS; CHRISTOFFEL FUNCTIONS; ASYMPTOTICS; POLYNOMIALS; STATISTICS; LIMITS;
D O I
10.1007/s11854-012-0006-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let mu be a measure with compact support, with orthonormal polynomials {p(n)} and associated reproducing kernels {K-n}. We show that bulk universality holds in measure in {xi : mu' (xi) > 0}. More precisely, given epsilon, r > 0, the linear Lebesgue measure of the set {xi : mu' (xi) > 0} and for which sup(vertical bar u vertical bar,vertical bar v vertical bar <= r) vertical bar K-n(xi + u/(K) over tilde (n)(xi,xi) + v/(K) over tilde (n)(xi,xi))/K-n(xi,xi) - sin pi(u - v)/pi(u - v)vertical bar >= epsilon approaches 0 as n -> infinity. There are no local or global regularity conditions on the measure mu.
引用
收藏
页码:219 / 253
页数:35
相关论文
共 54 条
[41]  
Ransford T., 1995, Potential Theory in the Complex Plane
[42]  
Rudin W., 1987, REAL COMPLEX ANAL
[43]  
Simon B., 2005, ORTHOGONAL POLYNOM 2
[44]  
Simon B, 2005, ORTHOGONAL POLYNOM 1
[45]  
Simon B., 2008, P S PURE MATH, V79, P295
[46]   Two extensions of Lubinsky's universality theorem [J].
Simon, Barry .
JOURNAL D ANALYSE MATHEMATIQUE, 2008, 105 (1) :345-362
[47]   Universality at the edge of the spectrum in Wigner random matrices [J].
Soshnikov, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 207 (03) :697-733
[48]  
Stahl H., 1992, GEN ORTHOGONAL POLYN, V43
[49]  
Stenger F, 1993, Numerical methods based on sinc and analytic functions
[50]   FROM THE LITTLEWOOD-OFFORD PROBLEM TO THE CIRCULAR LAW: UNIVERSALITY OF THE SPECTRAL DISTRIBUTION OF RANDOM MATRICES [J].
Tao, Terence ;
Vu, Van .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 46 (03) :377-396