Deep features to detect pulmonary abnormalities in chest X-rays due to infectious diseaseX: Covid-19, pneumonia, and tuberculosis

被引:45
|
作者
Biswas, Milon [1 ]
Gaur, Loveleen [2 ]
Alenezi, Fayadh [3 ]
Santosh, K. C. [4 ]
Mahbub, Md. Kawsher [1 ]
机构
[1] Bangladesh Univ Business & Technol, Mirpur 2, Dhaka 1216, Bangladesh
[2] Amity Univ, Gautam Buddha Nagar 201313, Uttar Pradesh, India
[3] Jouf Univ, Dept Elect Engn, Coll Engn, Sakakah 72238, Saudi Arabia
[4] Univ South Dakota, 2AI Appl Artificial Intelligence Res Lab Comp Sci, 414 E Clark St, Vermillion, SD 57069 USA
基金
美国国家科学基金会;
关键词
Chest X-ray; DNN; Medical imaging; Infectious DiseaseX; Covid-19; Pneumonia; Tuberculosis; SEGMENTATION;
D O I
10.1016/j.ins.2022.01.062
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Chest X-ray (CXR) imaging is a low-cost, easy-to-use imaging alternative that can be used to diagnose/screen pulmonary abnormalities due to infectious diseaseX: Covid-19, Pneumonia and Tuberculosis (TB). Not limited to binary decisions (with respect to healthy cases) that are reported in the state-of-the-art literature, we also consider non-healthy CXR screening using a lightweight deep neural network (DNN) with a reduced number of epochs and parameters. On three diverse publicly accessible and fully categorized data -sets, for non-healthy versus healthy CXR screening, the proposed DNN produced the fol-lowing accuracies: 99.87% on Covid-19 versus healthy, 99.55% on Pneumonia versus healthy, and 99.76% on TB versus healthy datasets. On the other hand, when considering non-healthy CXR screening, we received the following accuracies: 98.89% on Covid-19 ver-sus Pneumonia, 98.99% on Covid-19 versus TB, and 100% on Pneumonia versus TB. To fur-ther precisely analyze how well the proposed DNN worked, we considered well-known DNNs such as ResNet50, ResNet152V2, MobileNetV2, and InceptionV3. Our results are comparable with the current state-of-the-art, and as the proposed CNN is light, it could potentially be used for mass screening in resource-constraint regions.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:389 / 401
页数:13
相关论文
共 50 条
  • [21] Automated diagnosis and prognosis of COVID-19 pneumonia from initial ER chest X-rays using deep learning
    Chamberlin, Jordan H.
    Aquino, Gilberto
    Nance, Sophia
    Wortham, Andrew
    Leaphart, Nathan
    Paladugu, Namrata
    Brady, Sean
    Baird, Henry
    Fiegel, Matthew
    Fitzpatrick, Logan
    Kocher, Madison
    Ghesu, Florin
    Mansoor, Awais
    Hoelzer, Philipp
    Zimmermann, Mathis
    James, W. Ennis
    Dennis, D. Jameson
    Houston, Brian A.
    Kabakus, Ismail M.
    Baruah, Dhiraj
    Schoepf, U. Joseph
    Burt, Jeremy R.
    BMC INFECTIOUS DISEASES, 2022, 22 (01)
  • [22] Deep learning-based automated multiclass classification of chest X-rays into Covid-19, normal, bacterial pneumonia and viral pneumonia
    Tiwari, Alok
    Sharan, Taresh Sarvesh
    Sharma, Shiru
    Sharma, Neeraj
    COGENT ENGINEERING, 2022, 9 (01):
  • [23] Detection of COVID-19 from chest X-rays using deep transfer learning
    Vo, Tri-Nhan
    Le, Ngoc-Bich
    Phan, Quoc-Hung
    Le, Thanh-Hai
    Pham, Thi-Thu-Hien
    HEALTH INFORMATICS JOURNAL, 2024, 30 (04)
  • [24] A deep convolutional neural network for COVID-19 detection using chest X-rays
    Bassi P.R.A.S.
    Attux R.
    Research on Biomedical Engineering, 2022, 38 (01) : 139 - 148
  • [25] Application of deep learning to identify COVID-19 infection in posteroanterior chest X-rays
    Maharjan, Jenish
    Calvert, Jacob
    Pellegrini, Emily
    Green-Saxena, Abigail
    Hoffman, Jana
    McCoy, Andrea
    Mao, Qingqing
    Das, Ritankar
    CLINICAL IMAGING, 2021, 80 : 268 - 273
  • [26] COVID-19 Diagnosis in Chest X-rays Using Deep Learning and Majority Voting
    Ben Jabra, Marwa
    Koubaa, Anis
    Benjdira, Bilel
    Ammar, Adel
    Hamam, Habib
    APPLIED SCIENCES-BASEL, 2021, 11 (06):
  • [27] Iteratively Pruned Deep Learning Ensembles for COVID-19 Detection in Chest X-Rays
    Rajaraman, Sivaramakrishnan
    Siegelman, Jenifer
    Alderson, Philip O.
    Folio, Lucas S.
    Folio, Les R.
    Antani, Sameer K.
    IEEE ACCESS, 2020, 8 (08): : 115041 - 115050
  • [28] Pareto optimization of deep networks for COVID-19 diagnosis from chest X-rays
    Guarrasi, Valerio
    D'Amico, Natascha Claudia
    Sicilia, Rosa
    Cordelli, Ermanno
    Soda, Paolo
    PATTERN RECOGNITION, 2022, 121
  • [29] Deep learning-based approach for detecting COVID-19 in chest X-rays
    Sahin, M. Emin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [30] Identifying Covid-19 Chest X-Rays by Image-Based Deep Learning
    He, Austin
    Hu, Hanbin
    PROCEEDINGS OF 2022 7TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, ICMLT 2022, 2022, : 112 - 118