Design, fabrication, and performance analysis of GaN vertical electron transistors with a buried p/n junction

被引:83
作者
Yeluri, Ramya [1 ]
Lu, Jing [1 ]
Hurni, Christophe A. [2 ]
Browne, David A. [2 ]
Chowdhury, Srabanti [3 ]
Keller, Stacia [1 ]
Speck, James S. [2 ]
Mishra, Umesh K. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
[3] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
关键词
BREAKDOWN VOLTAGE; OHMIC CONTACTS; ALGAN/GAN; DISPERSION;
D O I
10.1063/1.4919866
中图分类号
O59 [应用物理学];
学科分类号
摘要
The Current Aperture Vertical Electron Transistor (CAVET) combines the high conductivity of the two dimensional electron gas channel at the AlGaN/GaN heterojunction with better field distribution offered by a vertical design. In this work, CAVETs with buried, conductive p-GaN layers as the current blocking layer are reported. The p-GaN layer was regrown by metalorganic chemical vapor deposition and the subsequent channel regrowth was done by ammonia molecular beam epitaxy to maintain the p-GaN conductivity. Transistors with high ON current (10.9 kA/cm(2)) and low ON-resistance (0.4 m Omega cm(2)) are demonstrated. Non-planar selective area regrowth is identified as the limiting factor to transistor breakdown, using planar and non-planar n/p/n structures. Planar n/p/n structures recorded an estimated electric field of 3.1 MV/cm, while non-planar structures showed a much lower breakdown voltage. Lowering the p-GaN regrowth temperature improved breakdown in the non-planar n/p/n structure. Combining high breakdown voltage with high current will enable GaN vertical transistors with high power densities. (c) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 33 条
[21]   400-A (Pulsed) Vertical GaN p-n Diode With Breakdown Voltage of 700 V [J].
Kizilyalli, Isik C. ;
Edwards, Andrew P. ;
Nie, Hui ;
Bui-Quang, Phong ;
Disney, Donald ;
Bour, Dave .
IEEE ELECTRON DEVICE LETTERS, 2014, 35 (06) :654-656
[22]   Surface-related drain current dispersion effects in AlGaN-GaNHEMTs [J].
Meneghesso, G ;
Verzellesi, G ;
Pierobon, R ;
Rampazzo, F ;
Chini, A ;
Mishra, UK ;
Canali, C ;
Zanoni, E .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2004, 51 (10) :1554-1561
[23]   THERMAL ANNEALING EFFECTS ON P-TYPE MG-DOPED GAN FILMS [J].
NAKAMURA, S ;
MUKAI, T ;
SENOH, M ;
IWASA, N .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1992, 31 (2B) :L139-L142
[24]   1.5-kV and 2.2-mΩ-cm2 Vertical GaN Transistors on Bulk-GaN Substrates [J].
Nie, Hui ;
Diduck, Quentin ;
Alvarez, Brian ;
Edwards, Andrew P. ;
Kayes, Brendan M. ;
Zhang, Ming ;
Ye, Gangfeng ;
Prunty, Thomas ;
Bour, Dave ;
Kizilyalli, Isik C. .
IEEE ELECTRON DEVICE LETTERS, 2014, 35 (09) :939-941
[25]   Planar Nearly Ideal Edge-Termination Technique for GaN Devices [J].
Ozbek, A. Merve ;
Baliga, B. Jayant .
IEEE ELECTRON DEVICE LETTERS, 2011, 32 (03) :300-302
[26]   Nonalloyed ohmic contacts in AlGaN/GaN HEMTs by ion implantation with reduced activation annealing temperature [J].
Recht, F ;
McCarthy, L ;
Rajan, S ;
Chakraborty, A ;
Poblenz, C ;
Corrion, A ;
Speck, JS ;
Mishra, UK .
IEEE ELECTRON DEVICE LETTERS, 2006, 27 (04) :205-207
[27]   The 1.6-kV AlGaN/GaN HFETs [J].
Tipirneni, N. ;
Koudymov, A. ;
Adivaraban, V. ;
Yang, J. ;
Simin, G. ;
Khan, M. Asif .
IEEE ELECTRON DEVICE LETTERS, 2006, 27 (09) :716-718
[28]   The impact of surface states on the DC and RF characteristics of A1GaN/GaN HFETs [J].
Vetury, R ;
Zhang, NQQ ;
Keller, S ;
Mishra, UK .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (03) :560-566
[29]  
Wu Y.-F, 2011, 2011 69th Annual Device Research Conference (DRC), P217, DOI 10.1109/DRC.2011.5994505
[30]   Characterization of AlGaN/GaN p-n diodes with selectively regrown n-AlGaN by metal-organic chemical-vapor deposition and its application to GaN-based bipolar transistors -: art. no. 113703 [J].
Xing, H ;
DenBaars, SP ;
Mishra, UK .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (11)