Efficient generalized Golub-Kahan based methods for dynamic inverse problems

被引:23
作者
Chung, Julianne [1 ,2 ]
Saibaba, Arvind K. [3 ]
Brown, Matthew [4 ]
Westman, Erik [5 ]
机构
[1] Virginia Tech, Acad Integrated Sci, Dept Math, Blacksburg, VA 24061 USA
[2] Virginia Tech, Acad Integrated Sci, Computat Modeling & Data Analyt Div, Blacksburg, VA 24061 USA
[3] North Carolina State Univ, Dept Math, Raleigh, NC USA
[4] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[5] Virginia Tech, Dept Min & Minerals Engn, Blacksburg, VA USA
基金
美国国家科学基金会;
关键词
dynamic inversion; Bayesian methods; Tikhonov regularization; generalized Golub-Kahan; Matern covariance kernels; tomographic reconstruction; ITERATIVE METHODS; UNCERTAINTY QUANTIFICATION; IMAGE-RECONSTRUCTION; MOTION ESTIMATION; WEIGHTED-GCV; REGULARIZATION; TOMOGRAPHY; HYBRID; APPROXIMATIONS; ALGORITHMS;
D O I
10.1088/1361-6420/aaa0e1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider efficient methods for computing solutions to and estimating uncertainties in dynamic inverse problems, where the parameters of interest may change during the measurement procedure. Compared to static inverse problems, incorporating prior information in both space and time in a Bayesian framework can become computationally intensive, in part, due to the large number of unknown parameters. In these problems, explicit computation of the square root and/or inverse of the prior covariance matrix is not possible, so we consider efficient, iterative, matrix-free methods based on the generalized Golub-Kahan bidiagonalization that allow automatic regularization parameter and variance estimation. We demonstrate that these methods for dynamic inversion can be more flexible than standard methods and develop efficient implementations that can exploit structure in the prior, as well as possible structure in the forward model. Numerical examples from photoacoustic tomography, space-time deblurring, and passive seismic tomography demonstrate the range of applicability and effectiveness of the described approaches. Specifically, in passive seismic tomography, we demonstrate our approach on both synthetic and real data. To demonstrate the scalability of our algorithm, we solve a dynamic inverse problem with approximately 43 000 measurements and 7.8 million unknowns in under 40 s on a standard desktop.
引用
收藏
页数:29
相关论文
共 63 条
[41]   A dynamic oppositional biogeography-based optimization approach for time-varying electrical impedance tomography [J].
Rashid, A. ;
Kim, S. ;
Liu, D. ;
Kim, K. Y. .
PHYSIOLOGICAL MEASUREMENT, 2016, 37 (06) :820-842
[42]  
Rasmussen Carl Edward, 2006, GAUSSIAN PROCESSES M, V2
[43]   HYBRID AND ITERATIVELY REWEIGHTED REGULARIZATION BY UNBIASED PREDICTIVE RISK AND WEIGHTED GCV FOR PROJECTED SYSTEMS [J].
Renaut, Rosemary A. ;
Vatankhah, Saeed ;
Ardestani, Vahid E. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (02) :B221-B243
[44]   Regularization parameter estimation for large-scale Tikhonov regularization using a priori information [J].
Renaut, Rosemary A. ;
Hnetynkova, Iveta ;
Mead, Jodi .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (12) :3430-3445
[45]  
Saad Y., 2003, Iterative Methods for Sparse Linear Systems
[46]   Application of Hierarchical Matrices to Linear Inverse Problems in Geostatistics [J].
Saibaba, A. K. ;
Ambikasaran, S. ;
Li, J. Yue ;
Kitanidis, P. K. ;
Darve, E. F. .
OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2012, 67 (05) :857-875
[47]   Fast computation of uncertainty quantification measures in the geostatistical approach to solve inverse problems [J].
Saibaba, Arvind K. ;
Kitanidis, Peter K. .
ADVANCES IN WATER RESOURCES, 2015, 82 :124-138
[48]   Fast Kalman filter using hierarchical matrices and a low-rank perturbative approach [J].
Saibaba, Arvind K. ;
Miller, Eric L. ;
Kitanidis, Peter K. .
INVERSE PROBLEMS, 2015, 31 (01)
[49]   Efficient methods for large-scale linear inversion using a geostatistical approach [J].
Saibaba, Arvind K. ;
Kitanidis, Peter K. .
WATER RESOURCES RESEARCH, 2012, 48
[50]   State estimation and inverse problems in electrical impedance tomography: observability, convergence and regularization [J].
Sbarbaro, D. ;
Vauhkonen, M. ;
Johansen, T. A. .
INVERSE PROBLEMS, 2015, 31 (04)