Ceramic balls protected ultra-high performance concrete structure against projectile impact-A numerical study

被引:29
|
作者
Liu, Jian [1 ]
Wu, Chengqing [1 ]
Li, Jun [1 ]
Fang, Jianguang [1 ]
Su, Yu [1 ]
Shao, Ruizhe [1 ]
机构
[1] Univ Technol Sydney, Sch Civil & Environm Engn, Ctr Built Infrastruct Res, Ultimo, NSW 2007, Australia
关键词
Ceramic balls; UHPC; SPH-FE method; Projectile impact; SMOOTHED PARTICLE HYDRODYNAMICS; BALLISTIC PERFORMANCE; PENETRATION RESISTANCE; ARMOR CERAMICS; DYNAMIC STRENGTH; MESHFREE METHOD; SIMULATION; SPH; COMPOSITES; TOUGHNESS;
D O I
10.1016/j.ijimpeng.2018.11.006
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Ceramic materials have excellent mechanical properties such as light weight, great hardness and high compressive strength. In this paper, a numerical study is conducted to investigate the response of ceramic balls protected ultra-high performance concrete (UHPC) targets against the high-velocity rigid projectile impact using the coupled smoothed particle hydrodynamics-finite element (SPH-FE) method in LS-DYNA. Based on the validated numerical models, parametric studies are performed to explore the effect of diameter, spatial arrangement and material type of ceramic balls as well as the impact position on the dynamic performance of UHPC targets, and then perforation and ballistic limits of ceramic balls protected UHPC targets are obtained. Compared with other UHPC slabs at the striking velocities from 500 m/s to 850 m/s, UHPC slabs protected with 6-layer hex-pack arranged ceramic balls with the diameter of 20 mm is most effective in terms of reducing the depth of penetration (DOP). In addition, the utilization of ceramic balls is economical in protective structures since the damaged ceramic balls can be replaced and undamaged ceramic balls are reusable.
引用
收藏
页码:143 / 162
页数:20
相关论文
共 50 条
  • [21] Experimental and numerical study of the flexural behaviour of ultra-high performance fibre reinforced concrete beams
    Singh, M.
    Sheikh, A. H.
    Ali, M. S. Mohamed
    Visintin, P.
    Griffith, M. C.
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 138 : 12 - 25
  • [22] An experimental and numerical study of reinforced ultra-high performance concrete slabs under blast loads
    Li, Jun
    Wu, Chengqing
    Hao, Hong
    MATERIALS & DESIGN, 2015, 82 : 64 - 76
  • [23] Study on performance improvement of ultra-high performance concrete by vibration mixing
    Zheng, Yangzezhi
    Zhou, Yang
    Huang, Xiaoming
    Min, Yaochun
    Luo, Haoyuan
    Chen, Yuan
    Li, Weihuan
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 327
  • [24] Numerical investigation on dynamic performance of reinforced ultra-high ductile concrete-ultra-high performance concrete panel under explosion
    Liao, Qiao
    Xie, Xingxing
    Yu, Jiangtao
    STRUCTURAL CONCRETE, 2022, 23 (06) : 3601 - 3615
  • [25] Effect of high temperature on the performance of radiation-protected ultra-high performance concrete containing mixed fibers
    Han, Jianjun
    Liao, Dang
    Li, Guo
    Lv, Yajun
    Cao, Kelei
    Yang, Longbin
    Xi, Zhuangmin
    STRUCTURAL CONCRETE, 2023, 24 (03) : 3191 - 3207
  • [26] Study on the compressive strength and mixing of ultra-high performance concrete
    Feng, Su Li
    Zhao, Peng
    ARCHITECTURE, BUILDING MATERIALS AND ENGINEERING MANAGEMENT, PTS 1-4, 2013, 357-360 : 825 - +
  • [27] Study on the mechanical and rheological properties of ultra-high performance concrete
    Chen, Ying
    Liu, Peng
    Sha, Fei
    Yin, Jian
    He, Sasa
    Li, Qianghui
    Yu, Zhiwu
    Chen, Hailong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 17 : 111 - 124
  • [28] Experimental Study on Tensile Properties of Ultra-high Performance Concrete
    Fang Z.
    Zhou T.
    Liu L.
    Hu R.
    Huang Z.
    Tiedao Xuebao/Journal of the China Railway Society, 2022, 44 (05): : 157 - 165
  • [29] Design and preparation of ultra-high performance concrete with low environmental impact
    Shi, Ye
    Long, Guangcheng
    Ma, Cong
    Xie, Youjun
    He, Jionghuang
    JOURNAL OF CLEANER PRODUCTION, 2019, 214 : 633 - 643
  • [30] Triaxial compressive behaviour of ultra-high performance geopolymer concrete (UHPGC) and its applications in contact explosion and projectile impact analysis
    Lin, Sihao
    Liu, Jian
    Liu, Cheng
    Liu, Kai
    Liu, Pengfei
    Su, Yu
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 449