Bounded Max-colorings of Graphs

被引:0
作者
Bampis, Evripidis [1 ]
Kononov, Alexander [2 ]
Lucarelli, Giorgio [3 ]
Milis, Ioannis [4 ]
机构
[1] Univ Paris 06, LIP6, F-75252 Paris 05, France
[2] Sobolev Inst Mat, Novosibirsk, Russia
[3] Univ Paris 09, CNRS, LAMSADE, FRE 3234, Paris, France
[4] Univ Econm & Business, Athens, Greece
来源
ALGORITHMS AND COMPUTATION, PT I | 2010年 / 6506卷
关键词
COMPLEXITY; NUMBER;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In a bounded max-coloring of a vertex/edge weighted graph, each color class is of cardinality at most b and of weight equal to the weight of the heaviest vertex/edge in this class. The bounded max-vertex/edge-coloring problems ask for such a coloring minimizing the sum of all color classes' weights. These problems generalize the well known max-coloring problems by taking into account the number of available resources (colors) in practical applications. In this paper we present complexity results and approximation algorithms for the bounded max-coloring problems on general graphs, bipartite graphs and trees.
引用
收藏
页码:353 / +
页数:3
相关论文
共 22 条
[1]   A NOTE ON THE DECOMPOSITION OF GRAPHS INTO ISOMORPHIC MATCHINGS [J].
ALON, N .
ACTA MATHEMATICA HUNGARICA, 1983, 42 (3-4) :221-223
[2]   Mutual exclusion scheduling [J].
Baker, BS ;
Coffman, EG .
THEORETICAL COMPUTER SCIENCE, 1996, 162 (02) :225-243
[3]   RESTRICTIONS OF GRAPH PARTITION PROBLEMS .1. [J].
BODLAENDER, HL ;
JANSEN, K .
THEORETICAL COMPUTER SCIENCE, 1995, 148 (01) :93-109
[4]   AN OPTIMUM TIME SLOT ASSIGNMENT ALGORITHM FOR AN SS-TDMA SYSTEM WITH VARIABLE NUMBER OF TRANSPONDERS [J].
BONGIOVANNI, G ;
COPPERSMITH, D ;
WONG, CK .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1981, 29 (05) :721-726
[5]  
Boudhar M., 2000, BELG J OPER RES STAT, V40, P69
[6]   Approximating the max-edge-coloring problem [J].
Bourgeois, N. ;
Lucarelli, G. ;
Milis, I. ;
Paschos, V. Th. .
THEORETICAL COMPUTER SCIENCE, 2010, 411 (34-36) :3055-3067
[7]  
Chvatal V., 1979, Mathematics of Operations Research, V4, P233, DOI 10.1287/moor.4.3.233
[8]   Feasible edge colorings of trees with cardinality constraints [J].
de Werra, D ;
Hertz, A ;
Kobler, D ;
Mahadev, NVR .
DISCRETE MATHEMATICS, 2000, 222 (1-3) :61-72
[9]   Weighted coloring on planar, bipartite and split graphs: Complexity and approximation [J].
de Werra, D. ;
Demange, M. ;
Escoffier, B. ;
Monnot, J. ;
Paschos, V. Th. .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (04) :819-832
[10]   Time slot scheduling of compatible jobs [J].
Demange, M. ;
de Werra, D. ;
Monnot, J. ;
Paschos, V. Th. .
JOURNAL OF SCHEDULING, 2007, 10 (02) :111-127