A ONE-PHASE SPACE-FRACTIONAL STEFAN PROBLEM WITH NO LIQUID INITIAL DOMAIN

被引:0
作者
Roscani, Sabrina D. [1 ,2 ]
Ryszewska, Katarzyna [3 ]
Venturato, Lucas [1 ,2 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
[2] Univ Austral, Dept Matemat, FCE, S2000FZF, RA-1950 Rosario, Argentina
[3] Warsaw Univ Technol, Dept Math & Informat Sci, Koszykowa 75, PL-00662 Warsaw, Poland
关键词
space-fractional diffusion equation; Stefan problem; moving boundary problem; Caputo derivative;
D O I
10.1137/21M1461599
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a phase-change problem for a one-dimensional material with a nonlocal flux, expressed in terms of the Caputo derivative, which derives in a space-fractional Stefan problem. We prove existence of a unique solution to a phase-change problem with the fractional Neumann boundary condition at the fixed face x = 0, where the domain, at the initial time, consists of liquid and solid. Then we use this result to prove the existence of a solution to an analogous problem with solid initial domain, when it is not possible to transform the domain into a cylinder.
引用
收藏
页码:5489 / 5523
页数:35
相关论文
共 25 条
[1]  
Andreucci D., 2004, Lecture notes on Stefan Problem
[2]   The Cattaneo type space-time fractional heat conduction equation [J].
Atanackovic, Teodor ;
Konjik, Sanja ;
Oparnica, Ljubica ;
Zorica, Dusan .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2012, 24 (4-6) :293-311
[3]   Boundary conditions for fractional diffusion [J].
Baeumer, Boris ;
Kovacs, Mihaly ;
Meerschaert, Mark M. ;
Sankaranarayanan, Harish .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 336 :408-424
[4]  
BOYER F., 2013, MATH TOOLS STUDY INC, V183, DOI 10.1007/978-1-4614-5975-0
[5]  
Cannon John Rozier, 1984, The One-Dimensional Heat Equation
[6]  
Roscani SD, 2020, Arxiv, DOI arXiv:2009.12977
[7]   The one-phase fractional Stefan problem [J].
del Teso, Felix ;
Endal, Jorgen ;
Luis Vazquez, Juan .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (01) :83-131
[8]  
Evans LC., 1998, Partial Differential Equations
[9]  
Friedman A., 1958, Pacific J. Math., V8, P201
[10]   A generalized Stefan model accounting for system memory and non-locality [J].
Garra, R. ;
Falcini, F. ;
Voller, V. R. ;
Pagnini, G. .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2020, 114