Dynamic subgrid-scale modeling for large-eddy simulations in complex topologies

被引:17
|
作者
Jordan, SA [1 ]
机构
[1] USN, Undersea Warfare Ctr, Newport, RI 02841 USA
关键词
D O I
10.1115/1.1374215
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The dynamic eddy-viscosity relationship is a suitable choice for modeling the subgrid-scales (SGS) in a large-eddy simulation (LES) of complex turbulent flows in irregular domains. This algebraic relationship is easy to implement and its dynamic coefficient will give negligible turbulent viscosity contributions in the flow regions that are irrotational or laminar. Its fine-scale turbulence predictions can be qualitatively reasonable if the local grid resolution maintains the SGS field predominantly within the equilibrium range of turbulent energy spectra. This performance is given herein by two curvilinear coordinate forms of the dynamic Smagorinsky, model that are formally derived and a-priori tested using the resolved physics of the cylinder wake. The consei-vative form evaluates the coefficient in the computational (transformed) space whereas its non-dynamic conservative counterpart operates in the, physical domain. Although both forms equally captured the real normal SGS stress reasonably well, the real shear stress and dissipation rates were severely, under-predicted. Mixing the eddy-viscosity choice with a scale-similarity model can ease this latter deficiency.
引用
收藏
页码:619 / 627
页数:9
相关论文
共 50 条
  • [1] Subgrid-scale modeling for large-eddy simulations of compressible turbulence
    Kosovic, B
    Pullin, DI
    Samtaney, R
    PHYSICS OF FLUIDS, 2002, 14 (04) : 1511 - 1522
  • [2] Effects of the Subgrid-Scale Modeling in the Large-Eddy Simulations of Wind Turbines
    Ciri, U.
    Salvetti, M. V.
    Carrasquillo, K.
    Santoni, C.
    Iungo, G. V.
    Leonardi, S.
    DIRECT AND LARGE-EDDY SIMULATION X, 2018, 24 : 109 - 115
  • [3] Subgrid-Scale Models for Compressible Large-Eddy Simulations
    M. Pino Martín
    U. Piomelli
    G.V. Candler
    Theoretical and Computational Fluid Dynamics, 2000, 13 (5) : 361 - 376
  • [4] Subgrid-scale models for compressible large-eddy simulations
    Martín, MP
    Piomelli, U
    Candler, GV
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2000, 13 (05) : 361 - 376
  • [5] Structural subgrid-scale modeling for large-eddy simulation: A review
    Lu, Hao
    Rutland, Christopher J.
    ACTA MECHANICA SINICA, 2016, 32 (04) : 567 - 578
  • [6] Structural subgrid-scale modeling for large-eddy simulation: A review
    Hao Lu
    Christopher J.Rutland
    Acta Mechanica Sinica, 2016, 32 (04) : 567 - 578
  • [7] Structural subgrid-scale modeling for large-eddy simulation: A review
    Hao Lu
    Christopher J. Rutland
    Acta Mechanica Sinica, 2016, 32 : 567 - 578
  • [8] Gradient subgrid-scale model for relativistic MHD large-eddy simulations
    Carrasco, Federico
    Vigano, Daniele
    Palenzuela, Carlos
    PHYSICAL REVIEW D, 2020, 101 (06)
  • [9] Subgrid-scale modelling in large-eddy simulations of compressible magnetohydrodynamic turbulence
    Chernyshov, AA
    Karelsky, KV
    Petrosyan, AS
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2006, 21 (01) : 1 - 20
  • [10] An Anisotropic Subgrid-Scale Parameterization for Large-Eddy Simulations of Stratified Turbulence
    Khani, Sina
    Waite, Michael L.
    MONTHLY WEATHER REVIEW, 2020, 148 (10) : 4299 - 4311