Perspectives on Anomaly and Event Detection in Exascale Systems

被引:2
作者
Iuhasz, Gabriel [1 ,2 ]
Petcu, Dana [1 ,2 ]
机构
[1] Intitute E Austria Timisoara, Timisoara, Romania
[2] West Univ Timisoara, Timisoara, Romania
来源
2019 IEEE 5TH INTL CONFERENCE ON BIG DATA SECURITY ON CLOUD (BIGDATASECURITY) / IEEE INTL CONFERENCE ON HIGH PERFORMANCE AND SMART COMPUTING (HPSC) / IEEE INTL CONFERENCE ON INTELLIGENT DATA AND SECURITY (IDS) | 2019年
关键词
exascale; machine learning; anomaly; distributed; monitoring; PERFORMANCE;
D O I
10.1109/BigDataSecurity-HPSC-IDS.2019.00051
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The design and implementation of exascale system is nowadays an important challenge. Such a system is expected to combine HPC with Big Data methods and technologies to allow the execution of scientific workloads which are not tractable at this present time. In this paper we focus on an event and anomaly detection framework which is crucial in giving a global overview of a exascale system (which in turn is necessary for the successful implementation and exploitation of the system). We propose an architecture for such a framework and show how it can be used to handle failures during job execution.
引用
收藏
页码:225 / 229
页数:5
相关论文
共 50 条
  • [1] PESKEA: Anomaly Detection Framework for Profiling Kernel Event Attributes in Embedded Systems
    Ezeme, Okwudili M.
    Azim, Akramul
    Mahmoud, Qusay H.
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2021, 9 (02) : 957 - 971
  • [2] Predictive Reliability and Fault Management in Exascale Systems: State of the Art and Perspectives
    Canal, Ramon
    Hernandez, Carles
    Tornero, Rafa
    Cilardo, Alessandro
    Massari, Giuseppe
    Reghenzani, Federico
    Fornaciari, William
    Zapater, Marina
    Atienza, David
    Oleksiak, Ariel
    Piatek, Wojciech
    Abella, Jaume
    ACM COMPUTING SURVEYS, 2020, 53 (05)
  • [3] Conditional anomaly detection in event streams
    Huber, Marco F.
    AT-AUTOMATISIERUNGSTECHNIK, 2017, 65 (04) : 233 - 244
  • [4] Anomaly detection in embedded systems
    Maxion, RA
    Tan, KMC
    IEEE TRANSACTIONS ON COMPUTERS, 2002, 51 (02) : 108 - 120
  • [5] SAEQ: Semantic anomaly event quantifier for event detection and judgement in social media
    Lu, Xingyu
    Zhou, Xiang
    Gan, Shengli
    He, Xi
    Chen, Xian
    Xiao, Yunpeng
    Liu, Yanbing
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 271
  • [6] Anomaly Detection in Multicore Embedded Systems
    Conradi Hoffmann, Jose Luis
    Horstmann, Leonardo Passig
    Frohlich, Antonio Augusto
    2019 IX BRAZILIAN SYMPOSIUM ON COMPUTING SYSTEMS ENGINEERING (SBESC), 2019,
  • [7] Anomaly detection in smart agriculture systems
    Catalano, C.
    Paiano, L.
    Calabrese, F.
    Cataldo, M.
    Mancarella, L.
    Tommasi, F.
    COMPUTERS IN INDUSTRY, 2022, 143
  • [8] Communication Technologies for Exascale Systems
    Kash, J. A.
    Pepeljugoski, P.
    Doany, F. E.
    Schow, C. L.
    Kuchta, D. M.
    Schares, L.
    Budd, R.
    Libsch, F.
    Dangel, R.
    Horst, F.
    Offrein, B. J.
    Vlasov, Y.
    Green, W.
    Xia, F.
    Baks, C. W.
    Kwark, Y. H.
    Kam, D. G.
    Ritter, M. B.
    PHOTONICS PACKAGING, INTEGRATION, AND INTERCONNECTS IX, 2009, 7221
  • [9] Anomaly Detection in Power Markets and Systems
    Halden, Ugur
    Cali, Umit
    Catak, Ferhat Ozgur
    D'Arco, Salvatore
    Bilendo, Francisco
    2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM, 2023,
  • [10] Silicon Photonics for Exascale Systems
    Rumley, Sebastien
    Nikolova, Dessislava
    Hendry, Robert
    Li, Qi
    Calhoun, David
    Bergman, Keren
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2015, 33 (03) : 547 - 562